Illinois Risk and Reach Report

SPRING 2019

Table of Contents

The Illinois Risk and Reach Project is generously supported by:

Children's Initiative

W. Clement & Jessie V. Stone FOUNDATION

List of Figures

Introduction		
Table 1	Risk Indicators	13
Figure 1	Normal Distribution	13
Table 2	Definition of Risk Levels	13
Table 3	Number of Counties and Children at Each Risk Level	14
Table 4	Reach Indicators	14
Table 5	Fiscal Scan Domains and Categories	15
Population Charac	cteristics	
Figure 2	Children age 5 and Under by Race and Ethnicity, 2016	20
Figure 3	Children age 5 and Under by Household Income, 2016	20
Map 1	Number of Children age 5 and Under, 2016	21
Figure 4	Children age 5 and Under by Household Type, 2016	22
Figure 5	Children age 5 and Under by Household Size, 2016	22
Figure 6	Children age 5 and Under by Urbanicity, 2016	23
Figure 7	Parents with Children age 5 and Under by Educational Attainment, 2016	23
Figure 8	Children age 5 and Under by Nativity and Citizenship Status, 2016	24
Figure 9	Parents with Children age 5 and Under by Nativity and Citizenship Status, 2016	24
Overall Risk		
Table 6	Overall risk level and number and percent of Illinois children age 5 and under by county, 2016	28
Map 2	Overall risk level by county, 2016	29
Family Stability		
Table 7	Maternal Education: Number and percent of births to mothers age 20 and above who are not high school graduates, 2016	32
Figure 10	Maternal Education by each Race/Ethnicity	32
Map 3	Maternal Education: Percent of births to mothers age 20 and above who are not high school graduates, 2016	33
Table 8	Parental Employment: Number and percent of children age 5 and under with no parent in labor force, 2016	34
Figure 11	Parental Employment by each Race/Ethnicity	34
Map 4	Parental Employment: Percent of children age 5 and under with no parent in labor force, 2016	35
Table 9	Poverty: Number and percent of children age 5 and under living below poverty, 2016	36
Figure 12	Poverty by each Race/Ethnicity	36
Map 5	Poverty: Percent of children age 5 and under living below poverty, 2016	37
Table 10	Child Care Cost: Average child care cost and average cost as a percent of median family income, 2016	38
Figure 13	Child Care Cost by each Race/Ethnicity	38

Map 6	Child Care Cost: Average child care cost as a percent of median family income, 2016	39
Table 11	Housing Cost: Number and percent of occupied housing units that cost more than 30 percent of household income, 2016	40
Figure 14	Housing Cost by each Race/Ethnicity	40
Map 7	Housing Cost: Percent of occupied housing units that cost more than 30 percent of household income, 2016	41
Table 12	Homelessness: Number and percent of kindergarten students reported as homeless, FY2016	42
Figure 15	Homelessness by each Race/Ethnicity	42
Map 8	Homelessness: Percent of kindergarten students reported as homeless, FY2016	43
Table 13	Maltreatment: Number of indicated victims of abuse and neglect and rate per 1,000 children age 5 and under, FY2016	44
Figure 16	Maltreatment by each Race/Ethnicity	44
Map 9	Maltreatment: Rate of indicated victims of abuse and neglect per 1,000 children age 5 and under, FY2016	45
Table 14	Drug Overdose Deaths: Number of drug overdose deaths and rate per 100,000 population, 2016	46
Figure 17	Drug Overdose Deaths by each Race/Ethnicity	46
Map 10	Drug Overdose Deaths: Rate of drug overdose deaths per 100,000 population, 2016	47
Map 11	Income Assistance: Percent of income-eligible children age 5 and under receiving TANF, 2016	48
Table 15	Income Assistance: Number and percent of income-eligible children age 5 and under receiving TANF, 2016	49
Figure 18	Income Assistance by each Race/Ethnicity	49
Map 12	Child Care Subsidy: Percent of income-eligible children age 5 and under receiving Child Care Assistance Program benefits, FY2016	50
Table 16	Child Care Subsidy: Number and percent of income-eligible children age 5 and under receiving Child Care Assistance Program benefits, FY2016	51
Map 13	Housing Assistance: Percent of households receiving HUD housing assistance, 2015	52
Table 17	Housing Assistance: Number and percent of households receiving HUD housing assistance, 2015	53
Figure 19	Housing Assistance by each Race/Ethnicity	53
Map 14	Food Assistance: Percent of income-eligible children age 5 and under receiving SNAP benefits, 2016	54
Table 18	Food Assistance: Number and percent of income-eligible children age 5 and under receiving SNAP benefits, 2016	55
Figure 20	Food Assistance by each Race/Ethnicity	55
Map 15	Permanency: Percent of children age 5 and under attaining permanent homes within 12 months of entry into substitute care, FY2016	56
Table 19	Permanency: Number and percent of children age 5 and under attaining permanent homes within 12 months of entry into substitute care, FY2016	57
Figure 21	Permanency by each Race/Ethnicity	57
Figure 22	Fiscal Resources: Illinois State Operating Budget and Total Spending for Families with Young Children, FY2018 (in millions)	58, 82, 112
Figure 23	Fiscal Resources: Total Spending for Families with Young Children from both State Operating Budget and Select Federal Programs, FY2018 (in millions)	59, 83, 113
Figure 24	Fiscal Resources: Resources for Families with Young Children by Domain of Child Well-Being, FY2018 (in millions)	59, 83, 113
Figure 25	Fiscal Resources: Family Stability Expenditures by Category, FY2018	60
Figure 26	Fiscal Resources: Economic Support Expenditures by Program, FY2018	60
Figure 27	Fiscal Resources: Child and Family Support Expenditures by Program, FY2018	61
Table 20	Fiscal Resources: Family Stability Expenditures by Program, FY2018 (in millions)	61
Health		
Table 21	Maternal Morbidity: Number of deliveries with severe maternal morbidity and rate per 10,000 deliveries, 2016-2017	64

Figure 28	Maternal Morbidity by each Race/Ethnicity	64
Map 16	Maternal Morbidity: Rate of severe maternal morbidity per 10,000 deliveries, 2016-2017	65
Table 22	Preterm Births: Number and percent of preterm births, 2016	66
Figure 29	Preterm Births by each Race/Ethnicity	66
Map 17	Preterm Births: Percent of preterm births, 2016	67
Table 23	Lead Exposure: Number and percent of tested children age 6 and under with elevated blood lead levels, 2016	68
Figure 30	Lead Exposure by each Race/Ethnicity	68
Map 18	Lead Exposure: Percent of tested children age 6 and under with elevated blood lead levels, 2016	69
Table 24	Violence Exposure: Number of violent crimes and rate per 100,000 people, 2016	70
Map 19	Violence Exposure: Rate of violent crimes per 100,000 people, 2016	71
Map 20	Prenatal Care: Percent of births with adequate or above prenatal care utilization, 2016	72
Table 25	Prenatal Care: Number and percent of births with adequate or above prenatal care utilization, 2016	73
Figure 31	Prenatal Care by each Race/Ethnicity	73
Map 21	Child Nutrition: Percent of income-eligible children age 4 and under receiving WIC benefits, 2016	74
Table 26	Child Nutrition: Number and percent of income-eligible children age 4 and under receiving WIC benefits, 2016	75
Figure 32	Child Nutrition by each Race/Ethnicity	75
Map 22	Immunization: Percent of children age 19-35 months who completed the combined 7 vaccine series, 2016	76
Table 27	Immunization: Number and percent of children age 19-35 months who completed the combined 7 vaccine series, 2016	77
Figure 33	Immunization by each Race/Ethnicity	77
Map 23	Lead Testing: Percent of children age 6 and under tested for blood lead levels, 2016	78
Table 28	Lead Testing: Number and percent of children age 6 and under tested for blood lead levels, 2016	79
Figure 34	Lead Testing by each Race/Ethnicity	79
Map 24	Percent of children age 5 and under enrolled in All Kids who received mental health services through All Kids, FY2018	80
Table 29	Mental Health Services: Number and percent of children age 5 and under enrolled in All Kids who received mental health services through All Kids, FY2018	81
Figure 35	Fiscal Resources: Health Expenditures by Category, FY2018	84
Figure 36	Fiscal Resources: Nutrition Expenditures by Program, FY2018	85
Figure 37	Fiscal Resources: Healthcare and Family Services Expenditures by Program, FY2018	85
Figure 38	Fiscal Resources: All Kids Expenditures by Program Area, FY2018	86
Figure 39	Fiscal Resources: Maternal and Child Health Expenditures by Program, FY2018	86
Table 30	Fiscal Resources: Health Expenditures, FY2018 (in millions)	87
Early Care and Ed	ucation	
Table 31	Kindergarten Readiness: Number and percent of kindergarten students without demonstrated readiness, School Year 2017-2018	90
Figure 40	Kindergarten Readiness by each Race/Ethnicity	90
Map 25	Kindergarten Readiness: Percent of kindergarten students without demonstrated readiness, School Year 2017-2018	91
Table 32	Third Grade Proficiency-Language Arts: Number and percent of 3rd grade students not meeting expectations in English language arts. School Year 2016-2017	92
Figure 41	Third Grade Proficiency-Language Arts Proficiency by each Race/Ethnicity	92

Map 26	Third Grade Proficiency-Language Arts: Percent of 3rd grade students not meeting expectations in English language arts, School Year 2016-2017	93
Table 33	Third Grade Proficiency-Math: Number and percent of 3rd grade students not meeting expectations in mathematics, School Year 2016-2017	94
Figure 42	Third Grade Proficiency-Math by each Race/Ethnicity	94
Map 27	Third Grade Proficiency-Math: Percent of 3rd grade students not meeting expectations in mathematics, School Year 2016-2017	95
Map 28	Home Visiting: Percent of program-eligible children age 5 and under enrolled in a home visiting program, FY2016	96
Table 34	Home Visiting: Number and percent of program-eligible children age 5 and under enrolled in a home visiting program, FY2016	97
Map 29	Developmental Screening: Number of children age 5 and under who received developmental screening and were reported through Child Find, FY2018	98
Table 35	Developmental Screening: Number of children age 5 and under who received developmental screening and were reported through Child Find, FY2018	99-101
Map 30	Early Intervention: Percent of children age 2 and under receiving Early Intervention services, FY2016	102
Table 36	Early Intervention: Number and percent of children age 2 and under receiving Early Intervention services, FY2016	103
Figure 43	Early Intervention by each Race/Ethnicity	103
Map 31	Early Childhood Special Education: Percent of children age 3 to 5 receiving Early Childhood Special Education services, FY2016	104
Table 37	Early Childhood Special Education: Number and percent of children age 3 to 5 receiving Early Childhood Special Education services, FY2016	105
Figure 44	Early Childhood Special Education by each Race/Ethnicity	105
Map 32	High-Quality Child Care: Percent of children receiving child care subsidies who were in a Gold Circle of Quality program, FY2017	106
Table 38	High-Quality Child Care: Number and percent of children receiving child care subsidies who were in a Gold Circle of Quality program, FY2017	107
Map 33	Prevention Initiative capacity as a share of eligible children age 3 and under, FY2016	108
Table 39	Prevention Initiative capacity and capacity as a share of eligible children age 3 and under, FY2016	109
Figure 45	Prevention Initiative by each Race/Ethnicity	109
Map 34	Publicly Funded Preschool: Gap between publicly funded preschool capacity and number of eligible children age 3 to 5, FY2016	110
Table 40	Publicly Funded Preschool: Publicly funded preschool capacity and gap between capacity and number of eligible children age 3 to 5, FY2016	111
Figure 46	Fiscal Resources: Early Care and Education Expenditures by Category, FY2018	114
Figure 47	Fiscal Resources: Home Visiting Expenditures by Program, FY2018	115
Figure 48	Fiscal Resources: Head Start Expenditures by Program, FY2018	115
Figure 49	Fiscal Resources: Early Childhood Block Grant and Preschool Expansion Expenditures by Program, FY2018	116
Figure 50	Fiscal Resources: Special Education Expenditures by Program, FY2018	116
Table 41	Fiscal Resources: Early Care and Education Expenditures, FY2018 (in millions)	117
Appendix		
Appendix 1	Number of Counties and Children at Each Risk Level	120
Appendix 2	Risk Indicator Data by County	121-123
Appendix 3	Risk Levels by County	124-126
Appendix 4	Risk Scores by County	127-129
Appendix 5	Reach Indicator Data by County	130-132
Appendix 6	Reach Levels by County	133-135
Appendix 7	Technical Manual: Risk Data Sources	136-137
Appendix 8	Technical Manual: Reach Data Sources	138-140

Acknowledgements

The Illinois Risk and Reach Report is a collaborative effort of three organizations committed to ensuring young children have access to high-quality early childhood programs, services, and equitable opportunities to thrive.

ERIKSON INSTITUTE is the premier independent institution of higher education committed to ensuring all children realize their full potential. Erikson uniquely prepares child development, education, and social work leaders to improve the lives of young children and their families.

ILLINOIS EARLY CHILDHOOD ASSET MAP (IECAM) OF UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN provides information on existing services, the demographics of young children and their families, and state resources that serve young children.

THE FISCAL POLICY CENTER AT VOICES FOR ILLINOIS CHILDREN provides timely, credible, and accessible information and analysis on fiscal issues that affect children, families, and communities. Their work focuses on state budget and tax policy, as well as fiscal aspects of Voices' policy priorities, including education, health care, human services, and family economic security.

Erikson Institute

LEARN MORE ABOUT THE ILLINOIS RISK AND REACH REPORT AT: RiskandReach.erikson.edu

Graphic Design: Sarah Sommers Design sarahsommersdesign.com

RISK AND REACH PROJECT ADVISORY COUNCIL

Senator Omar Aquino Illinois State Senate District 2

Karen Berman Ounce of Prevention Fund

Representative Avery Bourne Illinois State House of Representatives District 95

Tim Carpenter Council for Strong America

Denise Castillo Dell Isola Irving Harris Foundation

Charles Chang Erikson Institute

Trey Childress formerly of the Office of the Governor

Catherine Corr University of Illinois College of Education

Paula Corrigan-Halpern Children's Home and Aid

Veronica Cortez Sargent Shriver National Center on Poverty Law

Mary Doran Illinois Department of Healthcare and Family Services

Ireta Gasner Ounce of Prevention Fund

Phyllis Glink Irving Harris Foundation

Andria Goss Erikson Institute

Tasha Green Cruzat Voices for Illinois Children

Diane Grigsby-Jackson formerly of Illinois Department of Human Services

Cornelia Grumman

Christina Hachikian Rustandy Center for Social Sector Innovation at the University of Chicago

Dan Harris Illinois Network of Child Care Resource and Referral Agencies

Theresa Hawley Illinois Action for Children

Carisa Hurley Illinois State Board of Education

Kathryn M. Kelly J.B. and M.K. Pritzker Family Foundation

Jack King formerly of the Illinois Department of Innovation and Technology

Mitch Lifson Voices for Illinois Children

Sophie Milam* Social Policy Strategies

Krishna V. Iyer Illinois Department of Innovation and Technology

Lauri Morrison-Frichtl Illinois Head Start Association

Geoff Nagle Erikson Institute

Cristina Pacione-Zayas Erikson Institute

McCormick Foundation

Andrea Palmer formerly of the Illinois Department of Public Health, Division of Maternal, Child and Family Health Services

Svlvia Puente Latino Policy Forum

Elliot Regenstein Foresight Law + Policy

Ginger Ostro Formerly of Advance Illinois

Hilary Scott UNICEF

Sara Slaughter W. Clement & Jessie V. Stone Foundation

Cynthia Tate Governor's Office of Early Childhood Development

Dawn Thomas Illinois Early Childhood Asset Map

Brandon Thorne W. Clement & Jessie V. Stone Foundation

Tara Townsend IFF

Molly Uhe-Edmonds Illinois Department of Children and Family Services

Amy Zimmerman Legal Council for Health Justice

*Lead author of the report

Risk and Reach in Illinois

The Illinois Risk and Reach Report provides accurate and relevant data that will ignite conversations, inspire action and, most importantly, provide necessary information for critical policy and funding decisions.

10 Illinois Risk and Reach Report | Spring 2019

Introduction

PURPOSE

The first five years of a child's life are critical for setting the foundation and arc for lifelong health, learning, and success.¹ Yet, not all children receive equitable opportunities to achieve their full potential. Over 20 percent of Illinois children age five and under live in poverty, and many do not have adequate access to the family, health, or educational supports that result in optimal development.

As research continues to validate the influence of the early years on children's ability to reach their full potential, important questions arise about how Illinois prioritizes young children:

- 1. What are we, as a State, doing to set our children up for success?
- 2. Are the policies we establish or resources we distribute making a difference?
- 3. Have we invested in effective programs, in geographies that need it the most, and at the right levels?
- 4. Do the children of Illinois have equitable access to high-quality programs and services and healthy communities, particularly members from historically marginalized groups?
- 5. If not, what does this mean for the future of our children and our State and how do we correct these inequities?

To answer these questions, we need to have the right data. In order to make investments that positively affect and optimize children's long-term outcomes, it is essential that we routinely assess and monitor indicators of early childhood well-being.

The inaugural Illinois Risk and Reach Report provides accurate and relevant data that will ignite conversations, inspire action and, most importantly, provide necessary information for critical policy and funding decisions. The intended audience includes:

- General Public
- Legislators

- Philanthropic Leaders
- Policy Advocates
- Research Community
- State Agency Leadership

The Report presents a set of curated data indicators representing risk factors that undermine optimal child development and compares them to the reach of publicly funded programs and services that support early childhood well-being. This analysis is conducted at the county level with the intention of understanding the extent to which programs and services for young children and their families are reaching communities in need of support.

The Report compiles data to serve several purposes:

- To evaluate how well we are reaching children experiencing risk factors in specific geographies;
- To help communities better understand the allocation of resources and their early childhood programming gaps and needs; and
- To inform decisions regarding policy, practice, and funding affecting early childhood.

By rigorously evaluating early childhood risk and reach, and the fiscal resources the state administers to support early childhood development, this Report identifies opportunities to take a deeper look at how to better align resources with demonstrated need. The hope is that state and local policymakers, practitioners, and legislators will rely on the Report to allocate resources and better coordinate those resources to serve the children in need, thereby ensuring all children have the opportunity to reach their potential. Working together, we can build a strong future for all Illinois children.

APPROACH

This Report was inspired in large part by efforts in other states to compare indicators of early childhood well-being with the availability of key supports.² However, our Report goes one-step further by integrating and evaluating the level of public investment in resources dedicated to families with young children.³ The Report analysis consists of three parts:

RISK — an assessment of 15 indicators representing risk factors that affect early childhood well-being

REACH — an analysis of the availability and distribution of 17 publicly funded programs and services for families with young children

FISCAL SCAN — an analysis of state-funded or state-administered programs and services serving young children and their families

The Report provides a comprehensive perspective on early childhood. Children develop in the context of relationships that exist in a larger network of systems. Therefore, children do not experience risk factors or utilize programs in a vacuum, nor do they function independently of their families or caregivers. A holistic view is critical to ensure that gains in one area are not offset by setbacks in another. Thus, the Report is organized around three broad domains of child well-being:

- FAMILY STABILITY
- HEALTH
- EARLY CARE AND EDUCATION

To illustrate the findings, the Report provides a visual compilation of maps, tables, and charts. Risk and Reach are assessed at the county level with maps that enable the reader to digest the geographic distribution of need and availability of services. When available, state-level data by race and ethnicity are provided, and state and national averages provide benchmarks for comparison. Fiscal investments are assessed at the state level, and fiscal charts visualize the allocation of these public investments. The Report findings are further augmented on our website through interactive maps as well as fiscal and program participation trends over time.⁴

As other states have demonstrated, an important benefit of compiling data in this format is that indicators can be assessed for changes and progress over time, and it is our intention to periodically update the Illinois Risk and Reach Report.

Despite its breadth, this Report is not meant to provide a comprehensive account of all early childhood programs in Illinois. The data in this Report represent only a slice of the universe of available early childhood data, much of which is collected and presented as part of the Illinois Early Childhood Asset Map at the University of Illinois at Urbana-Champaign and can be found at: iecam.illinois.edu.

PROCESS

Erikson Institute served as project manager from January 2018 through March 2019 to oversee the report production and website development. The combined expertise of three institutions, Erikson Institute, Illinois Early Childhood Asset Map (IECAM) of University of Illinois at Urbana-Champaign, and The Fiscal Policy Center at Voices for Illinois Children, provided the technical skills to compile the data and analysis into the Report, website, and other tools.

Throughout the production process, Erikson managed a multi-tiered feedback structure that convened an Advisory Council of more than 40 members representing key public and private stakeholders (listed in Acknowledgments section) for three focused meetings over the course of the report development (June 2018 through March 2019) to collect and distill feedback on the operational definitions of Risk, data selection, data analysis, report development, and dissemination strategy. In addition to the Advisory Council, Erikson convened regular meetings with early childhood advocates in the field, Erikson's Early Childhood Leadership Fellow alumni, subcommittees of the Illinois Early Learning Council (Executive Committee and Data, Research and Evaluation Subcommittee), and the Illinois State BUILD Team.

IECAM collected, cleaned, geocoded, and analyzed all data, as well as produced maps, tables and a technical manual. The Fiscal Policy Center specifically collected, categorized, and analyzed fiscal data for the Report. Erikson facilitated the process for defining Risk, setting the parameters, ensuring data quality control, providing lead authorship in the narrative drafting of the Report, and leading the dissemination strategy.

METHODOLOGY

RISK

Within the Report, Risk is defined through three domains of child well-being — Family Stability, Health, and Early Care and Education. The exercise of defining Risk took a slightly different approach by reframing traditional uses of "risk" terminology in the public discourse and within policymaking. More specifically, the Advisory Council challenged the common use of "risk" to describe populations in deficit language (i.e., at-risk children) and what it implicitly and erroneously communicates about the onus or root cause of the problem. As a result, the Advisory Council rejected the use of "risk" when coupled with characteristics associated with populations and individuals and instead advanced "risk" as situated in the environment and directly related to system flaws and circumstantial conditions outside of individual control that undermine child development (i.e., poverty, inadequate health care, exposure to violence, etc.).

Since Illinois is a BUILD Initiative state and the Illinois Early Learning Council spent significant time in the past year identifying strategies to foster racial equity through early childhood systems building, this Report builds on that effort by presenting data disaggregated by race and ethnicity (when available). Additionally, the Report includes Reach data that point to policy opportunities for addressing structural barriers as well as system alignment and coordination to better serve all children and families.

Table 1 reflects the 15 selected Risk Indicators that are available at the county level and updated annually thereby enabling the tracking of emerging trends.

TABLE 1. Risk Indicators

Family Stability
Maternal Education
Parental Employment
Poverty
Child Care Cost
Housing Cost
Homelessness
Maltreatment
Drug Overdose Deaths
Health
Maternal Morbidity
Preterm Births
Lead Exposure
Violence Exposure
Early Care and Education
Kindergarten Readiness

Third Grade Proficiency-Language Arts

Third Grade Proficiency-Math

For each Risk Indicator, counties were assigned a Risk Level based on their relationship to the state average for that indicator. Comparisons to the state average were based on z-scores, which represent the distance measured in standard deviations (SD) that a county falls either above or below the statewide average. Counties above the state average are in the High-Moderate Risk or High Risk categories while counties below the state average are in either the Low-Moderate Risk or Low Risk categories. Appendix 1 illustrates the data range and spread for each Risk Level and the number of counties and children at each Risk Level.

FIGURE 1. Normal Distribution

TABLE 2. Definition of Risk Levels

Risk Level	% of Normal Distribution	Definition
Low (L)	15.9	greater than 1 standard deviation below the state average
Low-Moderate (LM)	34.1	less than 1 standard deviation below the state average
High-Moderate (HM)	34.1	less than 1 standard deviation above the average
High (H)	15.9	greater than 1 standard deviation above the average

Each of the 15 Risk Indicators has a map illustrating the Risk Level by county and a table providing the specific indicator data. When available, data by race and ethnicity and national averages are presented with the map. Risk Indicator data are summarized in Appendix 2, Risk Indicator Data by County.

OVERALL RISK

Overall Risk assigns each county to an Overall Risk Level based on their average score across the individual Risk Indicators. To calculate the average risk score, we first summed the z-scores for all of the individual Risk Indicators and then divided by the total number of Risk Indicators (n = 15). When a county lacked data for an indicator, that indicator was removed from that county's calculation of Overall Risk.

Each county's average risk score was compared to the State average risk score and assigned to an Overall Risk Level according to the number of standard deviations that a county fell either above or below the statewide average. Again, counties above the State average are in the High-Moderate Overall Risk or High Overall Risk categories while counties below the State average are in either the Low-Moderate Overall Risk or Low Overall Risk categories.

For Overall Risk, we provide a map illustrating the Risk Level by county and a table summarizing county Overall Risk Levels. Overall Risk data are summarized in Appendix 3, Risk Levels by County, and Appendix 4, Risk Scores by County.

TABLE 3. Number of Counties and Children at EachOverall Risk Level

Risk level	Number of counties	Number of children (0-5)
Low (L)	15	95,958
Low-Moderate (LM)	36	206,026
High-Moderate (HM)	39	570,397
High (H)	12	73,371
Total	102	945.752

REACH

To define Reach, we selected 17 indicators representing public programs or services that support positive outcomes for children. The Reach Indicators were selected across the three domains of child well-being.

TABLE 4. Reach Indicators

Family Stability	
Income Assistance	
Child Care Assistance Program	
Housing Assistance	
Food Assistance	
Permanency	
Health	
Prenatal Care	
Child Nutrition	
Immunization	
Lead Testing	
Mental Health Services	
Early Care and Education	
Home Visiting	
Developmental Screening	
Early Intervention	
Early Childhood Special Education	
High-Quality Child Care	
Prevention Initiative	
Publicly Funded Preschool	

For each Reach Indicator, counties were assigned a Reach Level based on their relationship to the State average for that indicator. Comparisons to the State average were based on z-scores, which represent the distance measured in standard deviations that a county falls either above or below the statewide average. Counties above the State average are in the High-Moderate Reach or High Reach categories while counties below the State average are in either the Low-Moderate Reach or Low Reach categories (see Figure 1 for Normal Distribution Plot).

Each of the 17 Reach Indicators has a map illustrating children's access to resources by county. Access to resources is illustrated using density circles of different sizes. For each Reach Indicator, the Reach data is overlaid on top of the Overall Risk map to show the contrast between Overall Risk Level and the services provided.

Each Reach Indicator also includes a table providing indicator data as well as state-level data by race and ethnicity and national averages, when available. The range of Reach data for each indicator will vary with each map. Reach Indicator data are summarized in Appendix 5, Reach Indicator Data by County, and Appendix 6, Reach Levels by County.

For additional detail on methodology, please refer to the technical manual in Appendix 7 and Appendix 8.

FISCAL SCAN

Budgets reflect choices and priorities. To illustrate the choices the state has made for investing in families with young children age five and under, the Fiscal Scan narrows down the budget to 10 categories in the same three domains of child well-being within the Risk and Reach sections of the Report (Family Stability, Health, and Early Care and Education). Table 5 lists the 10 budget categories across the three domains.

TABLE 5. Fiscal Scan Domains and Categories

	Family Stability
	Economic Support
	Child and Family Support
	Health
-	Nutrition
	Healthcare and Family Services
	Maternal and Child Health
	Early Care and Education
	Child Care Assistance Program
	Home Visiting
	Head Start (including Early Head Start and Migrant Head Start)
	Early Childhood Block Grant and Preschool Expansion
	Special Education

The programs and services considered in the Fiscal Scan are administered by the federal office of the Administration for Children and Families Region 5 and five state agencies:

- Illinois Department of Children and Family Services;
- Illinois Department of Healthcare and Family Services;
- Illinois Department of Human Services;
- Illinois Department of Public Health; and
- Illinois State Board of Education.

Analysis of publicly available data from the Governor's Office of Management and Budget and various state agencies informed the Fiscal Scan. The concluding spread in each domain features charts and tables that summarize the investments assigned to that domain. The full Fiscal Scan, which includes trend and participation data from Fiscal Year 2015 through Fiscal Year 2019, can be found as a supplemental report on the Risk and Reach website: RiskandReach.erikson.edu.

The following parameters guided the selection of budget lines included in the Fiscal Scan:

YOUNG CHILDREN AND THEIR FAMILIES

The Fiscal Scan includes all budget lines that could be directed toward children age five and under and their families, even if funds could also be allocated to youth/ adults outside that age range. When possible, the fiscal data provided only includes spending for children age five and under or families with children age five and under. However, the desired spending data was not always collected or reported by age group, as noted in the footnotes for the fiscal tables. In some instances, assumptions were applied to estimate the share of funding going to young children and their families based on the share of program participants who are children age five and under, also noted in table footnotes. Certain budget line items were not included in this Report where data was not available by age and did not allow for an estimate.

STATE AND FEDERAL FUNDING

In addition to State resources, the Fiscal Scan includes federal resources that are administered by the State and certain other federal funds. Thus, the analysis considers not just the level of State investments but also the allocation and administration of select federal resources to show how the State directs and leverages resources to make a positive impact on young children and families. Local funding sources are not included in this Report.

FISCAL YEAR 2018 ESTIMATED EXPENDITURES

The fiscal tables use Fiscal Year 2018 estimated expenditures, the most recent year for which expenditure data is available. While Fiscal Year 2019 actual appropriations data were available for most budget lines, we chose to use expenditure data because expenditures show how much funding was actually utilized. In one instance, Fiscal Year 2018 expenditure data was not available, so Fiscal Year 2017 actual expenditure data was substituted and noted in the footnotes.

OPERATIONAL AND ADMINISTRATIVE EXPENSES

Budget lines that focused on categories like managing facilities, printing, technology, or professional development were excluded.

LIMITATIONS

Determining the Overall Risk as an average of each of the individual Risk Indicators assumes each of the individual indicators has the same weight in the overall well-being of children. The reality may be that some of the Risk Indicators are more strongly associated with Overall Risk than others. However, there is substantial research to show that multiple risk factors present in the environment is more strongly associated with adverse outcomes than any one specific risk factor.

Furthermore, we are limited to the inclusion of data from existing data sets that are available at the county level. While other data may be valuable in determining Risk, if those data are not available at the county level, then it is not possible to include them in the determination of Risk in this Report.

Under the best of circumstances, the assessment of risk factors is more precise at the community level. Measuring at the county level is a blunt instrument. Maps do not illustrate sub-county concentration of risk factors and resources with the exception of Cook County on the Risk and Reach website: RiskandReach.erikson.edu

The bottom line is that being Low Risk or High Reach on an indicator only means that a county is doing better relative to other counties in the State, but it may or may not mean that children are doing as well as they could.

The Risk and Reach Report provides a platform for facilitating discussion and inquiry across stakeholders throughout Illinois. Heat maps and data tables illustrate the status of young child well-being and the choices made by the State in response. Data are meant to ignite conversations, inspire action, and inform policy decisions. However, data should be contextualized by local leadership, inclusive of beneficiaries, and in collaboration with State leaders tasked with allocating, administering, and implementing public programs and services.

Data call for deeper conversations across sectors to determine appropriate action for mitigating risk factors and ensuring more effective resource distribution (suggested prompts can be found in the Reading this Report section). Simple shuffling of resources around geographies may cause more harm and will not resolve chronic structural barriers that contribute to outcome disparities in young children. Strategic policy and investments bridge child- and familyserving systems and set the foundation to build upon a K-12 education system

KEY FINDINGS

There are an estimated 945.752 children under age five in Illinois.⁵ An average score of "Low Risk" for the county suggests that the young children in that county are likely to face fewer challenges to school readiness. By contrast, a score of "High Risk" suggests that the young children in that county are experiencing risk factors that lead to entering school already behind, remaining behind, and failing to achieve positive outcomes in school and beyond.

LOW OVERALL RISK — Of the 102 counties, 15 are in the Low Risk category and 95,958 children under age 5 (10.1 percent) live in these counties.

LOW-MODERATE OVERALL RISK - 36 counties are classified in this category where 206,026 children under age 5 (21.8 percent) live.

HIGH-MODERATE OVERALL RISK – Increased risk factors are present in the 39 counties that score in the High-Moderate category where 570,397 young children (60.3 percent) live.

HIGH OVERALL RISK — Finally, 12 counties are in the High Overall Risk category where 73,371 young children (7.8 percent) live.

In total, 643,768 children live in the 51 counties that are either High-Moderate or High Risk, representing approximately 68.1 percent of all children age five and under in Illinois.

Within the total Illinois Operating Budget for FY2018 (\$63.684 billion) a 4.9 percent share (\$3.127 billion) is spent on families with young children. This includes all funds appropriated by the state, from both federal and state sources of revenue. In addition, Illinois benefits from \$754 million in federal funds that do not pass through state agencies. These investments include food assistance (Supplemental Nutrition Assistance Program, SNAP), which goes directly to families with young children, and Head Start (including Early Head Start) funds that go directly to administering agencies. The addition of these federal funds brings the total amount of federal and state investment in families with young children to of \$3.881 billion.

Data should be contextualized by local leadership, inclusive 0 of beneficiaries, and in collaboration with 0 State leaders tasked with allocating, administering, and implementing public programs and services.

Reading this Report

COLOR CUES

Domains are sectioned by color and illustrate county-level data with maps, tables and graphs. Each section contains a set of Risk maps, followed by Reach maps and a summary of fiscal resources. Risk maps fall on right-hand pages and Reach maps fall on left-hand pages.

RISK MAPS

County-level data is provided in table format and visualized onto a map with the lowest- and highest-ranking counties listed as well as the state average. National averages are provided when available.

Lowest, Highest Risk Counties -

State Average

REACH MAPS

All Reach data are illustrated with yellow dots and superimposed onto the Overall Risk Level map. The dot sizes represent different levels of reach: Low (L), Low-Moderate (LM), High-Moderate (HM) and High (H). Data ranges vary with each map. Maps also have the lowest- and highest-ranking counties and state averages. National averages are provided when available.

Reach Level (L, LM, HM, H) • 😑

Lowest, Highest Reach Counties

RACE AND ETHNICITY

State-level race and ethnicity data accompany each Risk and Reach Indicator whenever such data is available. Race and ethnicity figures summarize the prevalence of the indicator within each subpopulation. For example, Figure 10 shows the share of all Black mothers age 20 and above that are not high school graduates. It does not show the share of all mothers age 20 and above who are not high school graduates and are also Black. Due to lack of data for detailed racial and ethnic categories, Asian, American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, and Two or more Races are grouped into one category as "Other, Non-Hispanic."

FISCAL RESOURCES

Each domain section ends with a summary of public investmen young children and their families.

SUGGESTIONS FOR STARTING THE DATA DISCUSSION

The Report can illuminate the strengths, opportunities, and trends related to how Illinois can and should support child well-being. Dialogue with diverse stakeholders and local leadership is key to make meaning of the data and to inform action at the local and state level. The following inquiry questions can aid in facilitating those conversations.

• What stands out on this map?

Numerous factors including social and economic differences, and the number, quality and accessibility of programs available to support children and families can explain county differences.

- What patterns do you see across indicators for a given county? can be done to leverage health to make a positive impact in family stability?
- Can connections be made by looking at different combinations of indicators? Which ones call more attention? will be necessary when observing connections among domains.
- What is happening in the county or region that might explain trends? into the complexity of these factors.
- Does this indicator present a regional or pocketed problem? clustering of neighboring counties.
- What other questions do these data raise?

Data from the report are also visualized on the interactive website at RiskandReach.erikson.edu.

ts in programs serving	Fiscal Resources	
		0.==

Cycling through indicators may reveal more nuanced inquiry and generate additional questions about how to address risk factors. For example, are there fewer health related risk factors in the environment compared to family stability? If so, what

The domains function like a three-legged stool with each part reinforcing each other. Strength in one domain cannot fully extinguish risk in another given the holistic nature of child development. Sensitivity to the interdependence of each domain

Conversations about history, infrastructure, racial and ethnic characteristics are important when thinking about differences and understanding the context that created them. Community members and those with local knowledge can provide insight

Widening the focus on the map can illuminate if high risk or low reach is unique to a particular county or experienced by a

Next steps can be to develop more detailed questions, research resources or connect with people who can provide answers.

Population Characteristics

A comprehensive description of the young child population in Illinois can contextualize the analysis especially because this Report geographically presents Risk factors in relationship to the Reach of public investments along with how both Risk and Reach is experienced by different racial and ethnic groups. Children age five and under make up 7.4 percent of the 12.8 million residents of Illinois.⁶ Map 1 summarizes the Illinois child population by county.⁷ Other figures in this section offer an overview of the general characteristics of young children in Illinois.

FIGURE 2. Children age 5 and under by race and ethnicity, 2016

FIGURE 3. Children age 5 and under by household income, 2016

CHILD POPULATION

MAP 1. Number of children age 5 and under, 2016

FIGURE 4. Children age 5 and under by household type, 2016

FIGURE 5. Children age 5 and under by household size, 2016

*Due to lack of data for detailed racial and ethnic categories, Asian, American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, and Two or more Races are grouped into one category as "Other, Non-Hispanic."

FIGURE 6. Children age 5 and under by urbanicity, 2016

FIGURE 7. Parents with children age 5 and under by educational attainment, 2016

*Due to lack of data for detailed racial and ethnic categories, Asian, American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, and Two or more Races are grouped into one category as "Other, Non-Hispanic."

FIGURE 8. Children age 5 and under by nativity and citizenship status, 2016

	U.S. Citizen, Born in the U.S.	U.S. Citizen, Born in U.S. Territory	U.S. Citizen, Born Abroad of U.S. Citizen Parent(s)	U.S. Citizen by Naturalization	Not a U.S. Citizen
All Children	98.1%	0.03%	0.5%	0.3%	1.1%
Black, Non-Hispanic	98.9%	0.00%	0.2%	0.2%	0.6%
Latinx or Hispanic	97.7%	0.07%	0.7%	0.4%	1.1%
White, Non-Hispanic	99.2%	0.02%	0.4%	0.1%	0.3%
Other, Non-Hispanic*	91.4%	0.02%	1.2%	1.3%	6.1%

Source: IPUMS, 2016.

Footnote: No Illinois children age 5 and under were born in American Samoa Northern Mariana Islands, or U.S. Virgin Islands.

FIGURE 9. Parents with children age 5 and under by nativity and citizenship status, 2016

	U.S. Citizen, Born in the U.S.	U.S. Citizen, Born in U.S. Territory	U.S. Citizen, Born Abroad of U.S. Citizen Parent(s)	U.S. Citizen by Naturalization	Not a U.S. Citizen
All Parents	74.5%	0.3%	0.7%	8.5%	16.1%
Black, Non-Hispanic	91.6%	0.0%	0.2%	4.4%	3.8%
Latinx or Hispanic	40.9%	1.1%	0.8%	12.2%	45.1%
White, Non-Hispanic	90.4%	0.0%	0.7%	4.7%	4.2%
Other, Non-Hispanic*	26.5%	0.1%	1.1%	31.4%	40.8%

Source: 2016 ACS 5 year estimates, IPUMS.

Footnote: No Illinois parents with children age 5 and under were born in American Samoa or Northern Mariana Islands.

*Due to lack of data for detailed racial and ethnic categories, Asian, American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, and Two or more Races are grouped into one category as "Other, Non-Hispanic."

Data call for deeper conversations across sectors to determine appropriate action for mitigating risk factors and ensuring more effective resource distribution.

Almost all of the counties in the state, regardless of their current ranking, have strengths from which to build and opportunities for improvement.

Risk and Reach

While this Report explores each Risk Indicator in depth, it is important that we first consider the overall risk environment that these indicators collectively create. First, a child's experience of a Risk Indicator typically does not occur in isolation. Instead, risk in one indicator can trigger risk in another, for example, parental job loss leads to a loss of family housing and in turn a change or loss of child care providers.

Second, children exposed to risk from multiple, simultaneous indicators are likely to experience greater adversity, meaning they are more likely to experience the negative consequences of stress.⁸ This chronic exposure to risk in and of itself has consequences for healthy child development. Chronic stress causes an over-activation of the stress response system so the body is constantly in a heightened state of arousal, which disrupts normal brain and organ development and, consequently, may damage brain architecture and neurocognitive systems.⁹ This can result in poor academic performance, a lack of social competence. and an inability to regulate emotions. Even adult cognitive abilities have been shown to be impaired in part by elevated chronic stress during childhood.¹⁰ While this Report does not measure risk at the individual or family level, the countylevel assessment provides insight into the risk environment in which children and families are situated.

By aggregating the Risk Levels of the 15 Risk Indicators, we assigned an Overall Risk Level for each county (see Introduction section for methodology details). This single Overall Risk Level is meant to focus attention on children's overall exposure to risk and start conversations about where Illinois counties fall along the continuum of risk, the availability and accessibility of resources in High Risk counties, and what we can learn from counties that provide the lowest-risk environments for young children.

In addition to providing a useful visual and metric of the comprehensive risk continuum across Illinois, Overall Risk serves as a backdrop to our evaluation of Reach. All Reach maps use the Overall Risk map as a background with Reach data presented in a series of density circles. This enables the reader to evaluate the level of Reach in relation to each county's level of Overall Risk.

Map 2 and Table 6 show the Overall Risk Level for each county. Twelve counties fell into the High Overall Risk category, representing 73,371 Illinois children (7.8 percent), while 15 counties were categorized as Low Overall Risk, representing 95,958 Illinois children (10.1 percent). The greatest concentration of High Risk counties was located in the southern part of the state.

While some counties and even regions provide higher Overall Risk environments for young children, it is important to note that 81.4 percent of all Illinois counties (83 out of 102) are rated as High Risk on at least one of the indicators and 96.1 percent of the counties (98 out of 102) are rated as High- or High-Moderate Risk on at least one of the indicators.

Even counties with Low Overall Risk performed poorly on individual indicators. Of the 15 Low Overall Risk counties, six had at least one indicator in the High Risk category. Likewise, four of the 12 High Overall Risk counties had at least one indicator in the Low Risk category. Therefore, almost all of the counties in the state, regardless of their current ranking, have strengths from which to build and opportunities for improvement.

Overall Risk data are also summarized in Appendix 3, Risk Levels by County, and Appendix 4, Risk Scores by County.

28 Illinois Risk and Reach Report | Spring 2019

OVERALL RISK

TABLE 6. Overall risk level and number and percent of Illinois children age 5 and under by county, 2016

RISK LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

County	#	%		County	#	%		County	#	%	
Adams	5,195	0.5	LM	Hardin	165	0.0	Н	Morgan	2,096	0.2	HM
Alexander	607	0.1	Н	Henderson	384	0.0	LM	Moultrie	1,118	0.1	LM
Bond	1,036	0.1	LM	Henry	3,167	0.3	LM	Ogle	3,313	0.4	LM
Boone	3,856	0.4	HM	Iroquois	1,858	0.2	HM	Peoria	15,076	1.6	Н
Brown	326	0.0	LM	Jackson	3,702	0.4	Н	Perry	1,326	0.1	HM
Bureau	2,151	0.2	HM	Jasper	762	0.1	L	Piatt	1,107	0.1	L
Calhoun	294	0.0	L	Jefferson	2,834	0.3	Н	Pike	1,107	0.1	HM
Carroll	896	0.1	L	Jersey	1,256	0.1	L	Роре	222	0.0	HM
Cass	1,145	0.1	HM	JoDaviess	1,162	0.1	L	Pulaski	349	0.0	Н
Champaign	13,593	1.4	LM	Johnson	704	0.1	LM	Putnam	318	0.0	LM
Christian	2,024	0.2	HM	Kane	43,123	4.6	HM	Randolph	1,831	0.2	LM
Clark	1,107	0.1	LM	Kankakee	8,342	0.9	HM	Richland	1,152	0.1	LM
Clay	1,025	0.1	LM	Kendall	10,895	1.2	L	RockIsland	10,794	1.1	Н
Clinton	2,550	0.3	L	Knox	3,076	0.3	HM	St.Clair	20,446	2.2	HM
Coles	3,044	0.3	HM	Lake	51,586	5.5	LM	Saline	1,635	0.2	HM
Cook	395,080	41.8	HM	LaSalle	7,483	0.8	HM	Sangamon	14,276	1.5	HM
Crawford	1,094	0.1	LM	Lawrence	1,072	0.1	HM	Schuyler	377	0.0	LM
Cumberland	764	0.1	LM	Lee	2,210	0.2	LM	Scott	324	0.0	LM
DeKalb	7,300	0.8	HM	Livingston	2,352	0.2	LM	Shelby	1,458	0.2	L
DeWitt	1,160	0.1	LM	Logan	1,635	0.2	LM	Stark	362	0.0	HM
Douglas	1,518	0.2	HM	McDonough	1,712	0.2	HM	Stephenson	3,045	0.3	HM
DuPage	66,307	7.0	L	McHenry	20,810	2.2	LM	Tazewell	10,127	1.1	LM
Edgar	1,312	0.1	HM	McLean	12,859	1.4	LM	Union	1,092	0.1	HM
Edwards	487	0.1	L	Macon	8,242	0.9	Н	Vermilion	6,412	0.7	Н
Effingham	2,538	0.3	L	Macoupin	2,913	0.3	HM	Wabash	795	0.1	HM
Fayette	1,487	0.2	HM	Madison	19,077	2.0	HM	Warren	1,167	0.1	HM
Ford	1,055	0.1	LM	Marion	3,032	0.3	HM	Washington	942	0.1	LM
Franklin	2,747	0.3	Н	Marshall	814	0.1	LM	Wayne	1,171	0.1	LM
Fulton	2,259	0.2	HM	Mason	832	0.1	HM	White	1,026	0.1	LM
Gallatin	396	0.0	Н	Massac	965	0.1	HM	Whiteside	4,096	0.4	LM
Greene	854	0.1	HM	Menard	860	0.1	LM	Will	51,919	5.5	LM
Grundy	4,071	0.4	LM	Mercer	1,021	0.1	HM	Williamson	4,496	0.5	HM
Hamilton	505	0.1	LM	Monroe	2,065	0.2	L	Winnebago	22,047	2.3	Н
Hancock	1,246	0.1	L	Montgomery	1,796	0.2	HM	Woodford	2,935	0.3	L

Source: ACS 2016 5-year estimates and Risk and Reach Report analysis of individual indicator data.

Footnote: Overall Risk assigns each county to an Overall Risk Level based on their average score across the 15 individual risk indicators. Please see the Methodology section for additional detail.

OVERALL RISK

LOW RISK

HIGH RISK

MAP 2. Overall risk level by county, 2016

Source: Risk and Reach Report analysis of individual indicator data.

Footnote: Overall Risk assigns each county to an Overall Risk Level based on their average score across the 15 individual risk indicators. Please see the Methodology section for additional detail.

Family Stability

Family stability is essential for providing young children with the economic and emotional resources they need to thrive. Programs that support family stability can play an important role both in preventing problems before they occur and intervening in problems before they become worse. The investments needed to support family stability take one of two broad forms: economic support and child and family support.

In addition to ensuring that parents are able to meet children's basic needs for food and housing, economic security can reduce parenting stress that may negatively affect parent-child relationships. Financial stability increases the likelihood that parents will be able to provide the kinds of experiences, both at home and in the community, that contribute to positive development.¹¹

Likewise, children thrive in stable and nurturing environments. Research points to the underlying role of parenting and the home environment in providing the stability and support young children need for positive development.

To develop to their full potential, children need secure relationships with adult caregivers and safe and reliable housing, among other necessities.¹²

Eight indicators illustrate risk in family stability. These Family Stability Risk Indicators are: maternal education, parental employment, poverty, child care cost, housing cost, homelessness, child maltreatment, and drug overdose deaths. The Advisory Council wanted to include parental incarceration as a Family Stability Risk Indicator but reliable county-level data on parental incarceration does not exist. To evaluate how well we are supporting family stability, we examined five Family Stability Reach Indicators: income assistance, child care subsidy, housing assistance, food assistance, and permanency.

Lastly, to identify the public dollars available to support family stability, data include state and federal investments in two program areas: economic support and child and family support.

KEY FINDINGS

Sixty-six of Illinois's 102 counties (64.7 percent) are at High Risk on at least one of the eight Family Stability Risk Indicators, with 30 counties (29.4 percent) scoring in the High Risk category on at least two of the eight Family Stability Indicators.

Fifty-one of Illinois's 102 counties (50.0 percent) are considered High Reach on at least one of the five Family Stability Reach Indicators, with 23 counties (22.5 percent) scoring in the High Reach category on two or more of the five indicators.

Overall, investments in Family Stability represent a state-federal partnership, but the state provides a greater share of the funding for child and family supports while the federal government assumes more responsibility for economic supports.

RISK: MATERNAL **EDUCATION**

Maternal education is one of the strongest predictors of disparities in child health, behavioral, and cognitive outcomes. Children of mothers with more educational attainment have decreased incidence of low birth weight and infant mortality and are more likely to be up-to-date on their immunizations.¹³

Mothers with less than a high school degree often experience financial strain, which can affect their mental health, level of stress, and quality of interactions with their children.¹⁴ Low maternal education is associated with children who are less likely to experience cognitive stimulation and high-quality child care during sensitive periods of development.¹⁵

Higher levels of maternal attainment are strongly associated with increased school readiness and educational achievement.¹⁶ In fact, parental education is more strongly related to academic achievement in childhood than income.¹⁷

Map 3 shows that 9.1 percent of all births in 2016 were to mothers with less than a high school degree. Douglas County had the highest percentage (31.3 percent) while Monroe County had the lowest percentage (1.2 percent). Ten counties fall in the High Risk category on this measure.

TABLE 7. Number and percent of births to mothers age 20 and above who are not high school graduates, 2016

RISK LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

County	#	%		County	#	%		County	#	%	
Adams	60	7.1	LM	Hardin	5	14.3	Н	Morgan	21	6.3	LM
Alexander	8	10.1	HM	Henderson	4	5.6	LM	Moultrie	48	23.9	Н
Bond	11	7.4	LM	Henry	46	8.6	HM	Ogle	27	4.8	LM
Boone	68	11.8	ΗМ	Iroquois	30	9.0	HM	Peoria	233	9.2	HM
Brown	3	4.4	LM	Jackson	62	9.4	HM	Perry	24	11.1	ΗМ
Bureau	30	8.6	ΗМ	Jasper	5	4.3	LM	Piatt	8	4.2	LM
Calhoun	3	6.3	LM	Jefferson	46	9.1	HM	Pike	14	7.1	LM
Carroll	11	8.0	LM	Jersey	8	3.7	L	Pope	1	3.7	L
Cass	28	15.4	Н	Jo Daviess	7	4.3	LM	Pulaski	16	18.8	Н
Champaign	168	7.0	LM	Johnson	9	7.3	LM	Putnam	3	6.0	LM
Christian	23	6.8	LM	Kane	904	13.5	Н	Randolph	35	10.1	ΗМ
Clark	8	4.4	LM	Kankakee	116	8.6	HM	Richland	18	8.7	НМ
Clay	13	8.2	LM	Kendall	47	2.9	L	Rock Island	212	12.0	НМ
Clinton	21	5.1	LM	Knox	48	8.4	LM	St. Clair	268	8.3	LM
Coles	44	8.3	LM	Lake	708	9.2	ΗM	Saline	38	11.6	HM
Cook	6,837	10.2	HM	LaSalle	119	9.4	HM	Sangamon	175	7.8	LM
Crawford	27	12.4	НМ	Lawrence	15	9.6	ΗM	Schuyler	1	1.7	L
Cumberland	7	5.6	LM	Lee	19	5.5	LM	Scott	3	6.0	LM
DeKalb	67	6.1	LM	Livingston	34	8.7	HM	Shelby	14	5.5	LM
DeWitt	7	4.2	LM	Logan	25	8.4	LM	Stark	7	10.9	НМ
Douglas	79	31.3	Н	McDonough	33	11.6	HM	Stephenson	36	7.7	LM
DuPage	579	5.3	LM	McHenry	196	6.3	LM	Tazewell	76	5.1	LM
Edgar	19	10.3	НМ	McLean	88	4.4	LM	Union	22	12.4	НМ
Edwards	2	2.8	L	Macon	151	11.4	HM	Vermilion	132	12.9	НМ
Effingham	19	4.2	LM	Macoupin	34	7.2	LM	Wabash	9	5.4	LM
Fayette	32	12.1	HM	Madison	199	6.5	LM	Warren	45	20.5	Н
Ford	11	6.8	LM	Marion	78	15.5	Н	Washington	11	7.2	LM
Franklin	48	10.2	HM	Marshall	14	12.0	HM	Wayne	28	13.3	Н
Fulton	28	7.6	LM	Mason	13	9.9	ΗM	White	8	5.2	LM
Gallatin	5	9.8	HM	Massac	10	6.1	LM	Whiteside	43	7.1	LM
Greene	17	12.9	HM	Menard	7	5.3	LM	Will	530	6.8	LM
Grundy	26	4.3	LM	Mercer	11	7.5	LM	Williamson	52	6.6	LM
Hamilton	11	12.0	НМ	Monroe	4	1.2	L	Winnebago	486	13.1	Н
Hancock	7	3.8	L	Montgomery	26	9.0	HM	Woodford	12	2.9	L

Source: IDPH

Footnote: Data include individuals who did not graduate high school or complete the GED.

Source: IDPH, 2016.

*Due to lack of data for detailed racial and ethnic categories, Asian, American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, and Two or more Races are grouped into one category as "Other, Non-Hispanic."

RISK: MATERNAL EDUCATION

MAP 3. Percent of births to mothers age 20 and above who are not high school graduates, 2016

and above

Spring 2019 | Illinois Risk and Reach Report 33

RISK: PARFNTAI **FMPI OYMENT**

Families with no working parent are much more likely to live in poverty, which poses a risk factor that can undermine healthy development in young children.¹⁸ Parental unemployment is also associated with stress, anxiety, and depression in the unemployed adult. Especially when a child is very young, the stress from parental unemployment has been shown to have long-term implications for academic achievement, entry into the workforce, challenging behavior, and the quality of parental interactions.¹⁹

Map 4 shows that 7.4 percent of Illinois children age five and under had both parents out of work in 2016. Counties ranged from a low of 1.0 percent in Clinton and Wabash counties to a high of 25.2 percent in Alexander County. Seventeen counties fall in the High Risk category on this indicator.

While Map 4 shows data for children with both parents unemployed, many more children live in households in which at least one parent is unemployed or one or both parents is underemployed. Underemployment occurs when the worker wants more hours but jobs are unavailable or the worker is in a job below their qualifications because higherskilled work is unavailable. Whether due to unemployment or underemployment, failing to maximize parents' employment potential prevents families from benefiting from the associated higher earnings.

TABLE 8. Number and percent of children age 5 and under with no parent in labor force, 2016

RISK LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

County	#	%		County	#	%		County	#	%	
Adams	219	4.4	LM	Hardin	6	3.5	LM	Morgan	118	6.0	LM
Alexander	140	25.2	Н	Henderson	17	4.5	LM	Moultrie	41	3.7	LM
Bond	48	4.8	LM	Henry	241	7.7	НM	Ogle	89	2.8	L
Boone	305	8.2	ΗМ	Iroquois	251	14.0	Н	Peoria	1,472	10.2	ΗM
Brown	11	3.5	LM	Jackson	392	11.0	НМ	Perry	140	10.9	НМ
Bureau	157	7.6	НМ	Jasper	19	2.9	LM	Piatt	13	1.2	L
Calhoun	6	2.5	L	Jefferson	183	6.8	LM	Pike	79	7.3	HM
Carroll	25	2.9	LM	Jersey	38	3.0	LM	Роре	33	15.3	Н
Cass	54	4.8	LM	Jo Daviess	16	1.4	L	Pulaski	37	10.6	ΗM
Champaign	786	5.9	LM	Johnson	77	11.6	Н	Putnam	21	6.6	LM
Christian	128	6.5	LM	Kane	2,738	6.5	LM	Randolph	94	5.7	LM
Clark	53	4.9	LM	Kankakee	957	11.9	Н	Richland	44	3.9	LM
Clay	46	5.1	LM	Kendall	336	3.1	LM	Rock Island	1,015	9.6	HM
Clinton	26	1.0	L	Knox	334	11.4	НМ	St. Clair	2,311	11.5	Н
Coles	185	6.2	LM	Lake	2,430	4.8	LM	Saline	66	4.4	LM
Cook	33,614	8.7	ΗМ	LaSalle	502	6.9	LM	Sangamon	1,054	7.7	HM
Crawford	25	2.3	L	Lawrence	188	18.1	Н	Schuyler	4	1.2	L
Cumberland	79	10.6	ΗМ	Lee	196	9.3	НМ	Scott	10	3.1	LM
DeKalb	477	6.7	LM	Livingston	132	5.6	LM	Shelby	97	6.8	LM
DeWitt	58	5.0	LM	Logan	31	1.9	L	Stark	56	16.0	Н
Douglas	116	7.9	ΗМ	McDonough	104	6.4	LM	Stephenson	173	5.8	LM
DuPage	2,322	3.5	LM	McHenry	1,041	5.1	LM	Tazewell	425	4.4	LM
Edgar	95	7.8	ΗМ	McLean	303	2.4	L	Union	123	12.0	Н
Edwards	17	3.7	LM	Macon	664	8.4	НМ	Vermilion	698	11.4	HM
Effingham	92	3.7	LM	Macoupin	192	6.9	LM	Wabash	8	1.0	L
Fayette	159	11.7	Н	Madison	1,774	9.6	НМ	Warren	49	4.3	LM
Ford	44	4.2	LM	Marion	262	9.1	ΗM	Washington	11	1.2	L
Franklin	286	11.4	ΗМ	Marshall	56	6.9	LM	Wayne	34	3.0	LM
Fulton	271	12.1	Н	Mason	63	7.8	ΗM	White	122	12.0	Н
Gallatin	44	12.6	Н	Massac	140	14.8	Н	Whiteside	256	6.6	LM
Greene	71	9.6	ΗМ	Menard	129	15.4	Н	Will	2,874	5.6	LM
Grundy	147	3.7	LM	Mercer	167	16.3	Н	Williamson	378	8.6	HM
Hamilton	18	3.8	LM	Monroe	37	1.8	L	Winnebago	1,763	8.2	НМ
Hancock	91	7.6	HM	Montgomery	198	11.5	Н	Woodford	77	2.7	L

Source: ACS 2016 5-year estimates

Footnote: Data include children living with two parents, children living with father only, and children living with mother only.

Footnote: Data are for 2015. State and county level data are for 2016

RISK: PARENTAL EMPLOYMENT MAP 4. Percent of children age 5 and under with no parent in labor force, 2016

Footnote: Data include children living with two parents, children living with father only, and children living with mother only.

RISK: POVFRTY

Children living in poverty are at a higher risk of exposure to factors that might impair brain development and affect social and emotional development, including environmental toxins, lead poisoning, inadequate nutrition, maternal depression, parental substance use disorder. trauma and abuse, violent crime, low-quality child care, and decreased cognitive stimulation.²⁰

The consequences of poverty are profound and enduring, especially when experienced early in a child's life and over a prolonged period without intervention. Children who grow up in poverty fair worse on tests of cognitive abilities, enter kindergarten with less academic preparation, are twice as likely to be retained a grade in school or to drop out of school, and are more likely to remain in poverty as adults.²¹

Poverty is higher in households with children. Nationally, in 2016, the percent of all individuals in poverty was 13.5 percent, but the poverty rate for families with children age five and under was 21.0 percent.²²

Map 5 shows that 21.5 percent of all children age five and under lived in families with incomes below poverty in 2016.²³ Alexander County had the highest percentage (56.1 percent) while Piatt County had the lowest percentage (5.8 percent). Fifteen counties fall in the High Risk category on this measure. In all, 38 counties have more than one in four children age five and under living in poverty.

TABLE 9. Number and percent of children age 5 and under living below poverty, 2016

RISK LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

Adams99419.1LMHarin23.024.0MMoran73.010.02.0MAlexander34056.1HHenderson70.02.0HMoltrie2.701.01.01.00<	County	#	%		County	#	%		County	#	%	
Alexander Side Her Henderson 107 27.9 HM Moutrie 27.5 27.9 14.9 Bond 32.4 31.3 H Henry 61 20.9 LM Ogle 559 1.0 1.0 Bonone 73.8 19.1 LM Iroquois 547 29.5 HM Perria 4.212 27.9 H Brown 50.0 23.0 HM Jackson 1.04 28.5 HM Perry 30.5 23.0 H Brown 50.0 23.4 HM Jackson 1.05 1.0 Perry 30.5 23.0 H Calmoni 54.0 18.4 Jasper 21.0 1.0 L Piker 267 21.1 H Caronin 50.0 30.6 HM Jasper 12.0 1.0 L Piker 267 21.1 H Caronin 50.0 30.6 J.0 Jasper 51.2 Jasper 1.0 Lasper 1.0 Lasper 1.0 H Piker Piker Piker Caronin 30.0 24.1 J.0 Jasper Jasper Jasper Jasper Jasper <td>Adams</td> <td>994</td> <td>19.1</td> <td>LM</td> <td>Hardin</td> <td>43</td> <td>25.9</td> <td>НМ</td> <td>Morgan</td> <td>378</td> <td>18.0</td> <td>LM</td>	Adams	994	19.1	LM	Hardin	43	25.9	НМ	Morgan	378	18.0	LM
Bend Size Fin Fenry 61 20.9 LM Order 530 L3 L3 Bronen 350 12.0 1M Incouoin 547 29.5 HM Penrian 4.212 2.0.9 H Brown 503 2.0.2 HM Jackson 1.0.5 1.0.5 1.0.4 Penrian 30.0 2.0.2 1.0.4 Brueau 503 1.0.4 1.0.4 Jackson 3.0.2 1.0.4 Penrian 6.4.0 2.0.2 1.0.4 Calhoun 540 1.0.5 1.0.4 Jackson 3.0.2 1.0.4 Penrian 6.4.0 2.0.2 1.0.4 Carson 3.0.0 1.0.4 Jackson 3.0.2 1.0.4 1.0.2 1.0.4 <t< td=""><td>Alexander</td><td>340</td><td>56.1</td><td>Н</td><td>Henderson</td><td>107</td><td>27.9</td><td>HM</td><td>Moultrie</td><td>257</td><td>22.9</td><td>HM</td></t<>	Alexander	340	56.1	Н	Henderson	107	27.9	HM	Moultrie	257	22.9	HM
Boonen Sim I.M Incouois Sim Sim Percia 4.21 2.32 1.M Brown Sim Cal IM Jackson I.054 2.85 IM Percia 305 2.30 I.8 Bureau Sim I.33 I.M Japeron Sim I.8 I.4 Pictor 2.02 I.8 Pictor 2.02 I.8 I.04 Pictor 2.01 I.04 Pictor 2.01 I.01 Pictor Pictor	Bond	324	31.3	Н	Henry	661	20.9	LM	Ogle	559	16.9	LM
Brown Sin Sin Jackson Nick Sin H Perry Sin Sin Sin Bureau Sin A H Jacpero Sin A H Pirato Sin A Calhoun Sin I.M Jefferson Sin X H Pirato Zin Zin Caroll M M Jon Jon Jon Jon Sin Jon Pirato Zin Zin Jon Caroll M M Jon Carona Jon Jon M Jon Jon <t< td=""><td>Boone</td><td>738</td><td>19.1</td><td>LM</td><td>Iroquois</td><td>547</td><td>29.5</td><td>HM</td><td>Peoria</td><td>4,212</td><td>27.9</td><td>HM</td></t<>	Boone	738	19.1	LM	Iroquois	547	29.5	HM	Peoria	4,212	27.9	HM
Bureau S130 2.3.4 HM Jasper S1 L Pirat G4 S3.5 L Calhoun 14.0 15.0 LM Jefferson 92.0 3.2.9 H Pike 2.6.7 2.4.1 H Caroll 14.0 15.0 LM Jerson 13.0 1.4. LM Pike 1.0.1 1.0.2 1.0.1	Brown	85	26.2	НМ	Jackson	1,054	28.5	HM	Perry	305	23.0	ΗМ
Calnoun5418.3LMJefferson93232.9HPike26724.1PikeCarroll14015.6LMJersey23317.8LMPopen44.020.0LCass35030.6LMJonoson1331.4LPulaski10931.2HChampain3.0922.27MJonson12918.4LMPutam96.030.0JJChristian4442.9LMKane7.57217.6LMRandolph24.9J.6.J.6.J.6.Clark2392.0LMKankake2.00224.0LMRackalsanA.4.4J.6.2J.6.2J.6.2Clark3622.9LMKankake2.002J.9.J.0.S.6.2J.	Bureau	503	23.4	HM	Jasper	51	6.7	L	Piatt	64	5.8	L
Carroll14015.LMJersey22317.8LMPope44.420.0LCass3603.023.021.04Joanoiss13.31.4LPulaski1.093.121.0Champain3.0922.27MJohnson12918.4I.MPutnam9.023.011.0Christian4.442.19LMKane7.572T.GLMRandolph2.921.01.021.02Clark3.092.02J.MKanke2.022.02I.MRechallan3.423.021.02Clark3.011.02LMKankace3.02J.MK.CScalas3.423.021.02Clark3.02J.MLAKankace3.02J.MScalas3.423.023.023.02Clark3.62J.MLAKankace7.58J.MJ.MScalas3.023.023.02Clark3.62J.MLAKankace3.02J.MJ.MScalas3.02J.M3.02J.MClark3.62J.MLAKankace3.02J.MJ.MScalasJ.M	Calhoun	54	18.3	LM	Jefferson	932	32.9	Н	Pike	267	24.1	ΗM
Cass Sind Sind HM Jo Daviess IS I. L Pulaski Ind Ind I. Champaign Sinds L2 HM Johnson I2 I. Kane I. I. Puland I. I. <td>Carroll</td> <td>140</td> <td>15.6</td> <td>LM</td> <td>Jersey</td> <td>223</td> <td>17.8</td> <td>LM</td> <td>Pope</td> <td>44</td> <td>20.0</td> <td>LM</td>	Carroll	140	15.6	LM	Jersey	223	17.8	LM	Pope	44	20.0	LM
Champaign Storp Que HM Jahnson 129 184 LM Putnam 96 301 HM Christian 444 21.9 LM Kance 7.572 1.60 LM Randolph 249 1.62 1.63 1.63 1.63 1.63 1.63 1.64 1.63 1.64	Cass	350	30.6	НМ	Jo Daviess	133	11.4	L	Pulaski	109	31.2	Н
Christian 444 21.9 LM Kane 7,572 17.6 LM Randolp 24.9 1.6.1 1.6.1 Clark 30 2.0 LM Kankakee 2,002 24.0 HM Richland 16.0 <td>Champaign</td> <td>3,092</td> <td>22.7</td> <td>НМ</td> <td>Johnson</td> <td>129</td> <td>18.4</td> <td>LM</td> <td>Putnam</td> <td>96</td> <td>30.1</td> <td>HM</td>	Champaign	3,092	22.7	НМ	Johnson	129	18.4	LM	Putnam	96	30.1	HM
Clark 239 21.6 LM Kanakaee 2.002 24.0 HM Richand 18.6 1.6.2 1.1.2 Clay 301 2.9.4 HM Kandall Sla 7.5 L Rock Island 3.424 3.1.7 H Clinton 3620 1.42 L Konx 982 3.1.9 H Schar 6.1.2 3.0.9 H Clorko 98.08 24.5 HM Lake 7.58 1.4.7 LM Salaren 3.0.9 H Cook 96.883 24.5 HM Laker 7.58 1.5.7 H Salaren 3.0.9 H Conk 96.883 24.5 HM Lawrence 3.8.3 1.5.7 H Salaren 1.0.9 1.4.9 Cumberland 185 2.4.9 HM Lawrence 3.8.4 1.5.7 H Schurler 1.0.9 1.4.9 Dekalon 1.707 2.4.3 HM Livingston 4.2.9 HM Schurler 1.0.9 1.4.9 Dekalon 1.77 2.7.9 LM Schurler 1.0.9 1.0.9 1.0.9 Daylage 4.5.9 M Maconon 1.6.	Christian	444	21.9	LM	Kane	7,572	17.6	LM	Randolph	249	13.6	L
Clay Sind	Clark	239	21.6	LM	Kankakee	2,002	24.0	НМ	Richland	186	16.2	LM
Clinton36214.2LKnox98231.9HSt. Clair6,12430.0HColes8822.9.0HMLake7,5881.4.7LMSaline57103.4.9JCook96,83324.5HMLaSalle1,79223.9HMSangamon4,07728.6HCrawford17015.6LMLawrence33831.5HSchuyler6103.8.9HCumberland1852.4.3HMLee27912.6LSchuyler1003.8.9HDeKalb1,77624.3HMLogano42.217.9LMSchubler10.51.4.9HDeWitt2,784.3.914.9Logano30018.4LMSchubler10.82.9.9HHDeWitt2,784.3.914.9Logano4652.7.9HMSchubler10.82.9.9HHDugals34.92.4.9MMcDonouth4652.7.9HMSchubler10.61.6.9HHDugals43.99.9LMcLeano1,76113.7LTazewell1,7611.6.9LIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII<	Clay	301	29.4	НМ	Kendall	814	7.5	L	Rock Island	3,424	31.7	Н
Coles9829.9.FMLake7.581.4.7LMSaline5713.4.9FMCook96,88324.5FMLaSalle1.7922.3.9FMSangamon4.0772.8.6FMCamford17015.6LMLawrence33831.5FMSchuyler6116.3FMCumberland18524.3FMLec27912.6LMSchuyler10031.8FMDeKalb1.77624.3FMLivingston42.017.9LMSchuyler1002.2.515.4FMDeWitt27824.9FMLogano30018.4LMStark1082.8.3FMDugaga34822.9FMMcDonough46527.2HMStarken10.4.2.8.3FMDugaga54.924.9FMMcDonough46527.2FMStarken10.4.16.4FMDugaga54.924.9FMMcDonough46527.2FMStarken10.4.16.4FMDugaga54.924.9FMMcDonough16.117.4 <td< td=""><td>Clinton</td><td>362</td><td>14.2</td><td>L</td><td>Knox</td><td>982</td><td>31.9</td><td>Н</td><td>St. Clair</td><td>6,124</td><td>30.0</td><td>HM</td></td<>	Clinton	362	14.2	L	Knox	982	31.9	Н	St. Clair	6,124	30.0	HM
Cook96,88324.5HMLaSalle1,79223.9HMSangamon4,0772.8.6HCrawford17015.6LMLawrence33831.5HSchuller6115.3LCumberland18424.3HMLeer27912.6LScott10033.8HDeKalb1.77624.3HMLivingston42.217.9LMShelby22515.4LDeWitt27824.0HMLogan30018.4LMStark10829.7HDuglas3482.9.9HMMcDonough46527.2HMStaphenson8612.8.3HDuPage6,5499.9.9LMcHenry2,60012.5LTazewell1,07410.6LEdgar4383.3.4HMcLean1,76113.7LUnion17816.5LEdgar43816.4LMMacoupin6,75123.2HMVarenilo2,35116.5LEdgar39226.4HMMacoupin6,82420.0LMVarenilo2,35116.5LEdgar39226.4HMMacoupin6,82420.0LMVarenilo2,35116.5LFarenkin91616.4LMMacoupin5,82420.0LMVarenilo3,373HVarenilo3,37HFarenk	Coles	882	29.0	НМ	Lake	7,588	14.7	LM	Saline	571	34.9	Н
Crawford 170 15.6 LM Lawrence 338 31.5 H Schuyler 61 16.3 L Cumberland 185 24.3 HM Lee 279 12.6 L Scott 100 33.8 H DeKalb 1,776 24.3 HM Livingston 42.0 17.9 LM Schuby 22.5 15.4 L DeWitt 278 24.0 HM Logan 300 18.4 LM Schuby 108 21.5 14. Douglas 348 2.9.9 HM McDonough 465 27.2 HM Stephenson 861 28.3 1.6 DuPage 6,549 9.9 L McDonough 465 17.5 L Indee 1.6 1.6 1.6 1.6 1.6 Edgar 43.8 3.3.4 H McLean 1.76 1.3 L Indee 1.6 1.6 1.6 1.6 Edgar 43.8 1.6.4 LM McLean 3.14 3.14 1.4 McMartine 1.6 1.6 1.6 1.6 Edgar 138 1.6 McLean 3.14 3.14 3.14<	Cook	96,883	24.5	ΗM	LaSalle	1,792	23.9	HM	Sangamon	4,077	28.6	ΗM
Cumberland18524.3HMLee27912.6LScott11033.8HDeKalb1,77624.3HMLivingston42217.9LMShelby22515.4LDeWitt27824.0HMLogan30018.4LMStark10829.5HDouglas34822.9HMMcDonough46527.2HMStephenson86128.3HDuPage6,5499.9LMcHenry2,60012.5LTazewell1,07410.6LEdgar43833.4HMcLean1,71613.7LUnion17816.5LEdwards8517.5LMMacoupin5,1437.8HVaremilion2,35136.7HEffingham41616.4LMMacoupin6,75023.2HMValabash16.51.6.5LFord39226.5LMMacoupin5,81420.0LMValabash16.51.6.5LFord39226.5LMMacoupin3,82420.0LMValabash16.51.6.5LFord39228.1MMacoupin1,08333.3HValabash16.51.6.5LFord39228.1MMacoupin1,08429.2LMValabash16.51.6.5LFord59.524.7M <td>Crawford</td> <td>170</td> <td>15.6</td> <td>LM</td> <td>Lawrence</td> <td>338</td> <td>31.5</td> <td>Н</td> <td>Schuyler</td> <td>61</td> <td>16.3</td> <td>LM</td>	Crawford	170	15.6	LM	Lawrence	338	31.5	Н	Schuyler	61	16.3	LM
DeKalb1,77624.3HMLivingston42217.9LMShelby22515.4LDeWitt27824.0HMLogan30018.4LMStark10829.7HDouglas34822.9HMMcDonough46527.2HMStephenson86128.3HDuPage6,5499.9LMcHenry2,60012.5LTazewell1,07410.6LEdgar4383.4.HMcLean1,76113.7LUnion17816.3LEdwards8516.4LMMacon3,14437.8HVermilion2,35116.4LEffingham41616.4LMMacoupin6752.3.2HMVabash16.516.4LFord32826.4HMMacoupin6752.3.2HMVabash16.516.4LFayette39226.4HMMacoupin5,8242.0.0LMVabash16.516.5LFord32826.5IMMarshall10.083.3.3HVabash16.516.516.5LFayette32924.7IMMarshall16.52.0.2IMVabash16.517.5LFord38728.3IMMarshall16.52.0.2IMVabash2.0.2IM10.516.516.5Fayette<	Cumberland	185	24.3	ΗM	Lee	279	12.6	L	Scott	110	33.8	Н
DeWith27824.0HMLogan30018.4LMStark10829.7HDouglas34822.9HMMcDonough46527.2HMStephenson86128.3HDuPage6,5499.9LMcHenry2,60012.5LTazewell1,07410.6LEdgar4383.4.HMcLean1,711.7.LUnion17816.3HEdmards8517.5LMMacoupin5,11437.8HVermilion2,35136.7HEffingham16.41.4.Macoupin6,752.3.2HMValash16.61.6.4LFayette3922.6.4HMMacoupin5,8242.0.0LMValash16.51.6.5LFord3282.5.5LMMacoupin5,8242.0.2LMValash1.6.51.6.5LFayette3922.6.4HMMacoupin5,8242.0.2LMValash1.6.51.6.5LFord3282.5.5LMMarion1.0.23.3.3HValash1.6.51.6.5LLFayette3872.5.5HMMaron2.1.5LMValash2.6.5HValash2.6.5LValash1.6.5LLFayette5932.4.7HMMason2.1.5JMValashL2.6.6L <td>DeKalb</td> <td>1,776</td> <td>24.3</td> <td>НM</td> <td>Livingston</td> <td>422</td> <td>17.9</td> <td>LM</td> <td>Shelby</td> <td>225</td> <td>15.4</td> <td>LM</td>	DeKalb	1,776	24.3	НM	Livingston	422	17.9	LM	Shelby	225	15.4	LM
Douglas3482.2.9HMMcDonough4652.7.2HMStephenson8612.8.3HDuPage6,5499.9LMcHenry2,60012.5LTazewell1,07410.6LEdgar4383.4.4MMcLean1,71117.7LUnion17.816.3LEdwards8517.5LMMacoupin6752.3.2HMVermilion2.35136.6HEffingham16.41.44Macoupin6752.3.2HMWabash16.614.6LFayette39226.4IMMacoupin6752.3.2HMWabash16.52.0.2LFord39226.4IMMacoupin6752.3.2IMWabash16.52.0.2LFord39226.4IMMacoupin6.752.3.2IMWabash16.514.6LFord39226.4IMMacoupin6.752.3.2IMWabash16.514.6LFord23825.5IMMarshall10.03.3.3IMWabash3.3.72.8.314.5IMFulton55924.7IMMasac2012.15IMWhiteside6.6.315.6IMGrandw7819.614.92.3.72.3.72.7.5IMWillamson6.6.314.5IMGrandw5611	DeWitt	278	24.0	ΗM	Logan	300	18.4	LM	Stark	108	29.7	ΗM
DuPage6,5499.9LMcHenry2,60012.5LTazewell1,0741,06LEdgar43833.4HMcLean1,76113.7LUnion17816.3LEdwards8517.5LMMacon3,14437.8HVermilon2,35136.7HEffingham41616.4LMMacoupin6752.32HMWabash11614.6LFayette39226.4HMMacion3,8242.00LMWarren235020.2LFord23825.5LMMarion1,0083.33HWashington16.517.5LFranklin88732.3HMarshall1652.12LMWayne3372.88HGallatin7819.6LMMasac3072.13LMWhiteside6.8315.5LGrundy56113.8LMenard2372.75HMWillamson1.3342.97HHamilton6112.2LMonree3032.93LMWillamson1.3342.97H	Douglas	348	22.9	ΗM	McDonough	465	27.2	НМ	Stephenson	861	28.3	ΗM
Edgar43833.4HMcLean1,76113.7LUnion17816.3LEdwards8517.5LMMacon3,11437.8HVermilion2,35136.7HEffingham41616.4LMMacoupin67523.2HMWabash16.014.614.6LFayette39226.4HMMadison3,82420.0LMWarren235020.2LMFord23822.5LMMarion1,00833.3HWashington16.517.5LFanklina88732.3HMarshall16520.2LMWayne33.728.8HFulton59324.7HMMason21325.6HMWhiteside28.928.2HGallatin7810.6LMMason23727.5HMWhiteside6.68110.5LGreene18121.2LMMenerd23727.5HMWillamson1.33429.7HHamilton6112.2LMonree30329.6HMWillamson1.34429.7H	DuPage	6,549	9.9	L	McHenry	2,600	12.5	L	Tazewell	1,074	10.6	L
Edwards8517.5LMMacon3,11437.8HVermilion2,35136.7HEffingham41616.4LMMacoupin67523.2HMWabash1614.6LFayette39226.4HMMadison3,82420.0LMWarren235020.2LFord23822.5LMMarion1,00833.3HWashington16517.5LFanklina88732.3HMarshall16520.2LMWayne33728.8HFulton55924.7HMMason21326.5HMWhite:29.928.2HGallatin7819.6LMMassac30731.9JMWhite:6.63110.5LGrundy56113.8LMercer30329.5HMWillamson13.3429.7HHamilton6112.2LMonree19.39.3LWinnebago6,75630.6H	Edgar	438	33.4	Н	McLean	1,761	13.7	L	Union	178	16.3	LM
Effingham41616.4LMMacoupin67523.2HMWabash16114.6LFayette39226.4HMMadison3,82420.0LMWarren23520.2LMFord23822.5LMMarion1,0083.3.3HWashington16.517.5LFranklin8873.2.3HMarshall16520.2LMWayne33728.8HFulton55924.7HMMason21325.6HMWhiteside28928.2HGallatin7819.6LMMassac30731.9HWhiteside63915.6LGrene18121.2LMMenard23727.5HMWillamson1,33429.7HHamilton6112.2LMonroe1939.3LWinnebago6,75630.6H	Edwards	85	17.5	LM	Macon	3,114	37.8	Н	Vermilion	2,351	36.7	Н
Fayette39226.4HMMadison3,82420.0LMWarren23520.0LFord23822.5LMMarion1,00833.3HWashington16517.5LFranklin88732.3HMarshall16520.2LMWayne33728.8HFulton55924.7HMMason21325.6HMWhite28928.2HGallatin7819.6LMMassac30731.9HWhiteside63915.6LGreene18121.2LMMenard23727.5HMWillamson1,33429.7HHamilton6112.2LMonroe1939.3LWinnebago6,75630.6H	Effingham	416	16.4	LM	Macoupin	675	23.2	ΗM	Wabash	116	14.6	L
Ford23822.5LMMarion1,00833.3HWashington16517.5LFranklino88732.3HMarshall16520.2LMWayne33728.8HFulton55924.7HMMason21325.6HMWhite28928.2HGallatin7819.6LMMassac30731.9HWhiteside63915.6LGrene18121.2LMMenard23727.5HMWillamson133429.7HHamilton6112.2LMonroe1939.3LWinnebago6,75630.6H	Fayette	392	26.4	НМ	Madison	3,824	20.0	LM	Warren	235	20.2	LM
Franklin88732.3HMarshall16520.2LMWayne33728.8HFulton55924.7HMMason21325.6HMWhite28928.2HGallatin7819.6LMMassac30731.9HWhiteside63915.6LGreene18121.2LMMenard23727.5HMWillamson1,33429.7HGrundy56113.8LMercer30329.6HMWillamson1,33429.7HHamilton6112.2LMonroe1939.3LWinnebago6,75630.6H	Ford	238	22.5	LM	Marion	1,008	33.3	Н	Washington	165	17.5	LM
Fulton 559 24.7 HM Mason 213 25.6 HM White 289 28.2 H Gallatin 78 19.6 LM Massac 307 31.9 H Whiteside 639 15.6 L Greene 181 21.2 LM Menard 237 27.5 HM Will 6,681 12.9 L Grundy 561 13.8 L Mercer 303 29.6 HM Williamson 1,334 29.7 H Hamilton 61 12.2 L Monroe 193 9.3 L Winnebago 6,756 30.6 H	Franklin	887	32.3	Н	Marshall	165	20.2	LM	Wayne	337	28.8	ΗM
Gallatin 78 19.6 LM Massac 307 31.9 H Whiteside 639 15.6 L Greene 181 21.2 LM Menard 237 27.5 HM Will 6.681 12.9 L Grundy 561 13.8 L Mercer 303 29.6 HM Williamson 1,334 29.7 H Hamilton 61 12.2 L Monroe 193 9.3 L Winnebago 6,756 30.6 H	Fulton	559	24.7	НМ	Mason	213	25.6	ΗM	White	289	28.2	ΗM
Greene 181 21.2 LM Menard 237 27.5 HM Will 6,681 12.9 L Grundy 561 13.8 L Mercer 303 29.6 HM Willamson 1,334 29.7 H Hamilton 61 12.2 L Monroe 193 9.3 L Winnebago 6,756 30.6 H	Gallatin	78	19.6	LM	Massac	307	31.9	Н	Whiteside	639	15.6	LM
Grundy 561 13.8 L Mercer 303 29.6 HM Williamson 1,334 29.7 H Hamilton 61 12.2 L Monroe 193 9.3 L Winnebago 6,756 30.6 H	Greene	181	21.2	LM	Menard	237	27.5	ΗM	Will	6,681	12.9	L
Hamilton 61 12.2 L Monroe 193 9.3 L Winnebago 6,756 30.6 H	Grundy	561	13.8	L	Mercer	303	29.6	HM	Williamson	1,334	29.7	ΗM
	Hamilton	61	12.2	L	Monroe	193	9.3	L	Winnebago	6,756	30.6	ΗM
Hancock 307 24.7 HM Montgomery 423 23.6 HM Woodford 368 12.5 L	Hancock	307	24.7	ΗM	Montgomery	423	23.6	HM	Woodford	368	12.5	L

Source: ACS 2016 5-year estimates

Footnote: Poverty maps showing 50 and 200 percent of the federal poverty threshold are available at RiskandReach.erickson.edu to further illuminate the share of families living in deep poverty and the share struggling to make ends meet.

Footnote: Data are for 2015. State and county level data are for 2016

RISK: POVERTY

MAP 5. Percent of children age 5 and under living below poverty, 2016

strugaling to make ends meet

RISK: CHII D CARE COST

Child care is one of the largest expenses in families, especially in Illinois, which ranked eighth among states for most expensive infant care.²⁴ According to the U.S. Department of Health and Human Services (HHS), child care is considered affordable if it costs no more than seven percent of household income.²⁵ Yet only a quarter (22.3 percent) of Illinois families spend less than 10 percent of income on infant care.²⁶ To afford child care for both an infant and a four-year old, a typical Illinois family would have to spend a third of their income.²⁷ A minimum wage worker in Illinois would need to work fulltime for 39 weeks just to pay for annual child care for one infant.²⁸

Map 6 shows child care costs as a share of median family income. Only Mason County had child care costs considered affordable by the HHS standard. The state average was 10.6 percent in 2016, with counties ranging from a low of 7.0 percent in Mason County to a high of 30.0 percent in Alexander County. Eleven counties fall into the High Risk category.

TABLE 10. Average child care cost and average cost as a percent of median family income, 2016

RISK LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

County	\$	%		County	\$	%		County	\$	%	
Adams	21.68	9.5	LM	Hardin	27.20	10.3	LM	Morgan	27.13	12.5	НМ
Alexander	27.20	30.0	Н	Henderson	22.21	11.5	LM	Moultrie	27.67	12.4	HM
Bond	26.18	10.1	LM	Henry	30.55	11.5	LM	Ogle	34.73	13.6	ΗМ
Boone	32.37	12.8	ΗM	Iroquois	24.40	12.2	LM	Peoria	32.14	13.5	HM
Brown	20.00	7.6	L	Jackson	30.77	16.7	Н	Perry	26.51	11.6	LM
Bureau	29.57	12.4	НМ	Jasper	20.46	7.5	L	Piatt	33.75	10.2	LM
Calhoun	*	*	*	Jefferson	27.61	14.4	ΗМ	Pike	21.72	11.2	LM
Carroll	26.03	11.2	LM	Jersey	25.32	8.6	L	Роре	*	*	*
Cass	22.50	11.3	LM	Jo Daviess	24.50	9.4	LM	Pulaski	28.12	20.6	Н
Champaign	35.34	13.8	HM	Johnson	26.89	10.6	LM	Putnam	25.00	8.4	L
Christian	26.96	12.2	LM	Kane	45.48	15.3	ΗМ	Randolph	23.84	9.8	LM
Clark	24.17	13.4	HM	Kankakee	28.90	11.8	LM	Richland	24.77	11.6	LM
Clay	25.42	14.8	ΗМ	Kendall	40.76	11.4	LM	Rock Island	31.50	15.8	Н
Clinton	27.75	8.6	L	Knox	30.40	17.0	Н	St. Clair	32.04	19.2	Н
Coles	24.31	14.5	НМ	Lake	40.54	11.2	LM	Saline	27.33	10.5	LM
Cook	34.84	14.4	НМ	LaSalle	25.42	10.9	LM	Sangamon	32.60	12.5	HM
Crawford	24.84	10.3	LM	Lawrence	20.50	10.5	LM	Schuyler	21.66	9.2	LM
Cumberland	22.89	9.1	L	Lee	29.13	12.1	LM	Scott	20.00	9.0	L
DeKalb	37.19	15.7	Н	Livingston	26.74	11.2	LM	Shelby	21.67	9.9	LM
DeWitt	27.06	9.5	LM	Logan	26.20	13.2	ΗМ	Stark	26.42	11.3	LM
Douglas	25.42	10.7	LM	McDonough	26.05	13.1	ΗМ	Stephenson	24.72	14.4	ΗМ
DuPage	47.56	12.0	LM	McHenry	43.47	18.4	Н	Tazewell	32.91	11.9	LM
Edgar	24.50	12.5	НМ	McLean	37.56	13.6	ΗМ	Union	23.11	9.6	LM
Edwards	23.43	11.1	LM	Macon	31.33	17.7	Н	Vermilion	27.83	14.4	ΗМ
Effingham	26.69	10.6	LM	Macoupin	26.38	10.9	LM	Wabash	29.00	13.9	ΗМ
Fayette	25.76	13.9	НМ	Madison	32.32	17.1	Н	Warren	22.78	14.0	ΗМ
Ford	25.14	12.0	LM	Marion	27.00	11.6	LM	Washington	26.00	9.9	LM
Franklin	27.82	15.0	НМ	Marshall	29.33	13.4	ΗМ	Wayne	24.92	12.6	ΗМ
Fulton	29.27	14.3	НМ	Mason	25.75	7.0	L	White	24.17	11.5	LM
Gallatin	*	*	*	Massac	26.04	8.2	L	Whiteside	31.15	14.2	HM
Greene	22.12	11.9	LM	Menard	27.26	10.8	LM	Will	38.26	10.6	LM
Grundy	29.10	9.5	LM	Mercer	27.75	10.1	LM	Williamson	28.15	11.8	LM
Hamilton	25.39	10.9	LM	Monroe	32.10	8.4	L	Winnebago	31.54	15.7	Н
Hancock	20.44	9.9	LM	Montgomery	25.67	14.4	ΗМ	Woodford	36.73	11.7	LM

Source: IDHS and ACS

Footnote: Child care cost is the average of the daily market rate medians of three types of licensed child care providers: child care centers, family child care homes, and group child care homes. Data are unavailable for some counties because they were not included in the INCCRRA database, no provider from that county met the criteria for inclusion in the sample, or rates are based upon fewer than three slots. *Data not available

RISK: CHILD CARE COST

MAP 6. Average child care cost as a percent of median family income, 2016

some counties because they were not included in the INCCRRA database, no provider from that county met the criteria for inclusion in the sample, or rates are based upon fewer than 3 slots. National average data are for 2017. State and county level data are for 2016.

RISK: HOUSING COST

Many families face a gap between wages and housing costs. In 2018, a full-time worker in Illinois earning the state minimum wage of \$8.25 per hour would have had to work 83 hours per week for all 52 weeks of the year, or approximately two full-time jobs, to afford a modest one-bedroom rental home at the Department of Housing and Urban Development's (HUD) fair market rent (FMR).²⁹

Due to the unavailability or inadequacy of affordable housing units, many families spend more than 30 percent of income on housing. Families with a high housing cost burden are left with fewer resources for other necessities, including high-quality early care and education for their children, putting them at risk of losing their homes given the financial strain of sustaining rent or mortgage payments.³⁰

Map 7 shows the percent of occupied housing units for which housing costs are greater than 30 percent of household income.³¹ The state average was 32.8 percent in 2016, with counties ranging from a low of 13.9 percent in Stark County to a high of 39.3 percent in Cook County. Seventeen counties fall into the High Risk category.

TABLE 11. Number and percent of occupied housing units that cost more than 30 percent of household income, 2016

RISK LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

County	#	%		County	#	%		County	#	%	
Adams	5,981	22.0	LM	Hardin	318	21.1	LM	Morgan	3,375	24.5	НМ
Alexander	724	28.6	Н	Henderson	482	15.8	L	Moultrie	1,031	17.8	LM
Bond	1,257	20.8	LM	Henry	3,825	19.0	LM	Ogle	5,275	25.4	НМ
Boone	5,557	30.2	Н	Iroquois	2,949	24.8	HM	Peoria	20,029	26.6	HM
Brown	359	16.9	L	Jackson	8,493	35.9	Н	Perry	1,753	21.7	LM
Bureau	3,218	23.0	ΗM	Jasper	653	17.6	L	Piatt	1,185	17.8	LM
Calhoun	452	23.3	ΗM	Jefferson	3,899	25.7	НМ	Pike	1,302	19.7	LM
Carroll	1,501	22.6	LM	Jersey	2,177	24.9	НМ	Pope	379	23.9	HM
Cass	934	18.2	LM	Jo Daviess	2,303	24.0	НМ	Pulaski	557	24.4	НМ
Champaign	26,326	32.7	Н	Johnson	914	20.3	LM	Putnam	405	16.6	L
Christian	2,908	20.9	LM	Kane	59,432	34.2	Н	Randolph	2,184	18.3	LM
Clark	1,473	22.1	LM	Kankakee	12,073	29.8	Н	Richland	1,088	16.9	L
Clay	864	15.5	L	Kendall	12,446	31.7	Н	Rock Island	15,892	26.4	НM
Clinton	2,811	20.1	LM	Knox	4,892	23.1	НМ	St. Clair	31,523	30.7	Н
Coles	6,290	29.8	Н	Lake	81,128	33.3	Н	Saline	2,260	22.6	LM
Cook	767,150	39.3	Н	LaSalle	11,708	26.4	НМ	Sangamon	21,345	25.7	HM
Crawford	1,575	20.7	LM	Lawrence	1,065	19.2	LM	Schuyler	454	15.3	L
Cumberland	762	18.1	LM	Lee	2,881	21.3	LM	Scott	395	18.9	LM
DeKalb	13,487	36.1	Н	Livingston	3,375	23.2	НМ	Shelby	1,662	18.0	LM
DeWitt	1,195	17.8	LM	Logan	2,234	20.3	LM	Stark	330	13.9	L
Douglas	1,591	21.0	LM	McDonough	2,952	24.9	НМ	Stephenson	5,411	27.6	НМ
DuPage	109,686	32.4	Н	McHenry	35,617	32.3	Н	Tazewell	10,858	19.9	LM
Edgar	1,748	22.9	ΗM	McLean	16,856	25.6	НМ	Union	1,238	18.3	LM
Edwards	443	16.0	L	Macon	10,965	24.4	НМ	Vermilion	7,359	23.3	HM
Effingham	2,401	18.0	LM	Macoupin	3,959	21.1	LM	Wabash	1,054	21.7	LM
Fayette	1,418	18.5	LM	Madison	27,487	25.7	НМ	Warren	1,335	19.6	LM
Ford	1,071	18.9	LM	Marion	3,818	24.1	ΗM	Washington	1,072	18.5	LM
Franklin	3,584	22.2	LM	Marshall	944	19.1	LM	Wayne	1,268	18.0	LM
Fulton	3,112	22.0	LM	Mason	1,492	24.5	НМ	White	1,108	17.9	LM
Gallatin	376	16.4	L	Massac	1,619	27.2	HM	Whiteside	5,387	22.9	HM
Greene	1,078	20.4	LM	Menard	1,090	20.9	LM	Will	72,749	32.3	Н
Grundy	5,216	28.2	Н	Mercer	1,054	16.0	L	Williamson	6,134	23.0	HM
Hamilton	656	19.3	LM	Monroe	3,187	24.5	НM	Winnebago	34,315	30.0	Н
Hancock	1,282	16.6	L	Montgomery	2,396	21.2	LM	Woodford	2,845	19.6	LM

Source: ACS 2016 5-year estimates

Footnote: Housing units include both owner-occupied and renter-occupied units.

Source: IPUMS, 2016.

RISK: HOUSING COST

MAP 7. Percent of occupied housing units that cost more than 30 percent of household income, 2016

RISK: HOMELESSNESS

Among children living in shelters nationwide, about half are under six years old and one in 10 are infants less than one year old.³² Children who lack a stable home are vulnerable to several adverse outcomes. Some consequences, such as hunger and poverty, may affect children before, during, and after they experience homelessness.³³

Children experiencing homelessness are more likely to have health problems and less access to medical and dental care.³⁴ A guarter or more have witnessed violence, and more than half have problems managing anxiety and depression.³⁵ A lack of stable housing can interrupt student learning and reduce academic achievement.³⁶ Children without stable homes are more than twice as likely than other children to repeat a school grade, be expelled or suspended, or drop out of high school.³⁷

Map 8 shows that 1.8 percent of all kindergartners were reported as homeless by their school's education liaison in Fiscal Year 2016 per the McKinney-Vento Homeless Assistance Act.³⁸ Jefferson County had the highest percentage (14.4 percent) while 11 counties reported 0.0 percent. Thirteen counties fall in the High Risk category on this measure.

TABLE 12. Number and percent of kindergarten students reported as homeless, FY2016

RISK LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

County	#	%		County	#	%		County	#	%	
Adams	21	3.1	НМ	Hardin	0	0.0	L	Morgan	3	1.0	LM
Alexander	5	7.1	Н	Henderson	0	0.0	L	Moultrie	4	3.7	HM
Bond	10	6.8	Н	Henry	13	2.3	LM	Ogle	1	0.2	LM
Boone	0	0.0	L	Iroquois	5	1.7	LM	Peoria	69	3.2	HM
Brown	5	11.4	Н	Jackson	41	7.8	Н	Perry	2	1.1	LM
Bureau	6	1.9	LM	Jasper	2	2.1	LM	Piatt	0	0.0	L
Calhoun	1	1.8	LM	Jefferson	59	14.4	Н	Pike	3	1.6	LM
Carroll	1	0.7	LM	Jersey	3	1.6	LM	Pope	1	2.8	НМ
Cass	1	0.6	LM	Jo Daviess	0	0.0	L	Pulaski	4	8.3	Н
Champaign	28	1.5	LM	Johnson	2	1.6	LM	Putnam	0	0.0	L
Christian	14	4.5	ΗМ	Kane	67	0.8	LM	Randolph	25	7.9	Н
Clark	4	2.0	LM	Kankakee	30	2.7	ΗМ	Richland	7	4.5	HM
Clay	7	4.2	ΗМ	Kendall	9	0.5	LM	Rock Island	9	0.5	LM
Clinton	18	4.4	HM	Knox	10	1.9	LM	St. Clair	78	2.8	HM
Coles	8	1.8	LM	Lake	68	0.8	LM	Saline	5	1.7	LM
Cook	995	2.0	LM	LaSalle	16	1.6	LM	Sangamon	37	1.7	LM
Crawford	2	1.0	LM	Lawrence	4	2.9	ΗМ	Schuyler	0	0.0	L
Cumberland	3	2.7	HM	Lee	2	0.7	LM	Scott	0	0.0	L
DeKalb	3	0.2	LM	Livingston	7	1.7	LM	Shelby	2	0.9	LM
DeWitt	2	1.1	LM	Logan	7	3.2	HM	Stark	3	4.8	HM
Douglas	7	2.9	ΗМ	McDonough	7	3.0	ΗМ	Stephenson	14	3.3	HM
DuPage	74	0.7	LM	McHenry	23	0.7	LM	Tazewell	14	1.0	LM
Edgar	4	2.1	LM	McLean	18	1.0	LM	Union	11	6.0	Н
Edwards	0	0.0	L	Macon	21	1.6	LM	Vermilion	25	2.5	LM
Effingham	7	1.9	LM	Macoupin	22	4.1	ΗМ	Wabash	10	8.3	Н
Fayette	4	1.9	LM	Madison	83	3.0	HM	Warren	2	1.1	LM
Ford	0	0.0	L	Marion	31	6.0	Н	Washington	8	5.5	Н
Franklin	24	5.4	Н	Marshall	1	1.1	LM	Wayne	7	3.7	HM
Fulton	2	0.6	LM	Mason	2	1.1	LM	White	5	2.6	ΗM
Gallatin	0	0.0	L	Massac	2	0.9	LM	Whiteside	9	1.5	LM
Greene	14	11.8	Н	Menard	1	0.5	LM	Will	84	1.2	LM
Grundy	6	0.6	LM	Mercer	1	1.2	LM	Williamson	26	3.4	HM
Hamilton	3	3.7	ΗМ	Monroe	5	1.5	LM	Winnebago	134	4.2	HM
Hancock	9	4.5	HM	Montgomery	15	5.1	HM	Woodford	4	0.7	LM

Source: ISBE

Footnote: Homelessness is defined by the McKinney-Vento Homeless Assistance Act

RISK: HOMELESSNESS

MAP 8. Percent of kindergarten students reported as homeless, FY2016

Footnote: Homelessness is defined by the McKinney-Vento Homeless Assistance Act.

RISK: MAITREATMENT

Child maltreatment includes physical, emotional, and sexual abuse as well as neglect by a caregiver. Maltreatment during infancy or early childhood can create long-term consequences such as cognitive delays, language problems, and poor academic performance.³⁹ Child abuse and neglect are also associated with psychological and emotional challenges such as aggression and depression.40

In addition to immediate consequences, the impact of child maltreatment can endure through adulthood. Child abuse or neglect have been found to increase the likelihood of substance use disorder, eating disorders, obesity, suicide, sexual promiscuity, adverse health effects, and school dropout later in life.41

Map 9 shows the rate of children age five and under with at least one substantiated allegation of maltreatment per 1,000 children in Fiscal Year 2016.42 Statewide, 14 young children per 1,000 had one or more substantiated reports of maltreatment. Hardin County had the highest rate (67 per 1,000) while Kendall County had the lowest rate (3 per 1,000). Fifteen counties fall in the High Risk category on this indicator. There are 34 counties that are more than twice the statewide average. including 10 which are more than three times the statewide average.

TABLE 13. Number of indicated victims of abuse and neglect and rate per 1,000 children age 5 and under, FY2016

RISK LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

County	#	Rate		County	#	Rate		County	#	Rate	
Adams	160	31	НМ	Hardin	11	67	Н	Morgan	77	37	HM
Alexander	30	49	Н	Henderson	12	31	HM	Moultrie	14	13	L
Bond	27	26	ΗМ	Henry	75	24	LM	Ogle	56	17	LM
Boone	36	9	L	Iroquois	25	13	L	Peoria	503	33	HM
Brown	4	12	L	Jackson	96	26	LM	Perry	52	39	Н
Bureau	42	20	LM	Jasper	20	26	HM	Piatt	15	14	LM
Calhoun	3	10	L	Jefferson	170	60	Н	Pike	27	24	LM
Carroll	18	20	LM	Jersey	41	33	HM	Pope	4	18	LM
Cass	27	24	LM	Jo Daviess	30	26	LM	Pulaski	10	29	НМ
Champaign	330	24	LM	Johnson	14	20	LM	Putnam	10	31	НМ
Christian	74	37	ΗМ	Kane	424	10	L	Randolph	46	25	LM
Clark	28	25	LM	Kankakee	103	12	L	Richland	54	47	Н
Clay	16	16	LM	Kendall	33	3	L	Rock Island	263	24	LM
Clinton	36	14	LM	Knox	77	25	LM	St. Clair	413	20	LM
Coles	124	41	Н	Lake	750	15	LM	Saline	68	42	Н
Cook	3220	8	L	LaSalle	210	28	HM	Sangamon	405	28	HM
Crawford	52	48	Н	Lawrence	26	24	LM	Schuyler	16	42	Н
Cumberland	22	29	HM	Lee	33	15	LM	Scott	8	25	LM
DeKalb	128	18	LM	Livingston	63	27	HM	Shelby	31	21	LM
DeWitt	29	25	LM	Logan	64	39	Н	Stark	6	17	LM
Douglas	15	10	L	McDonough	51	30	HM	Stephenson	98	32	НМ
DuPage	388	6	L	McHenry	201	10	L	Tazewell	237	23	LM
Edgar	48	37	ΗМ	McLean	187	15	LM	Union	63	58	Н
Edwards	10	21	LM	Macon	429	52	Н	Vermilion	246	38	HM
Effingham	60	24	LM	Macoupin	97	33	НМ	Wabash	18	23	LM
Fayette	46	31	HM	Madison	448	23	LM	Warren	28	24	LM
Ford	23	22	LM	Marion	70	23	LM	Washington	28	30	НМ
Franklin	130	47	Н	Marshall	15	18	LM	Wayne	31	26	HM
Fulton	51	23	LM	Mason	45	54	Н	White	38	37	HM
Gallatin	12	30	HM	Massac	21	22	LM	Whiteside	109	27	HM
Greene	19	22	LM	Menard	12	14	LM	Will	360	7	L
Grundy	31	8	L	Mercer	26	25	LM	Williamson	217	48	Н
Hamilton	11	22	LM	Monroe	17	8	L	Winnebago	774	35	НМ
Hancock	25	20	LM	Montgomery	50	28	HM	Woodford	42	14	LM

Source: DCES and ACS

Footnote: Illinois differentiates between substantiated and indicated determinations. A substantiated determination means that the allegation of maltreatment or risk of maltreatment was supported or founded according to state law or policy. An indicated determination means that maltreatment could not be substantiated but there was a reason to suspect that at least one child may have been maltreated or was at-risk of maltreatment

RISK: MALTREATMENT

MAP 9. Rate of indicated victims of abuse and neglect per 1,000 children age 5 and under, FY2016

substantiated but there was a reason to suspect that at least one child may have been maltreated or was at-risk of maltreatment.

Spring 2019 | Illinois Risk and Reach Report 45

RISK: DRUG **OVERDOSE** DEATHS

We wanted to show data about parental substance use disorder (SUD), but reliable SUD data for parents with children age five and under were not available at the county level. Instead, we use drug overdose deaths as a broad proxy for children's exposure to parental SUD.43

U.S. drug overdose deaths nearly tripled since 1999, largely driven by a dramatic increase in opioidrelated deaths.⁴⁴ Even when drug use does not result in overdose or death, it can have negative impacts on children. Children of parents with SUD are more likely to have lower socioeconomic status, greater difficulties in academic and social settings and family functioning, and increased risk of parental abuse or neglect.⁴⁵ They are over twice as likely to experience SUD themselves by young adulthood.46

Parental substance use can also result in harmful health effects for children. In 2016, nearly three of every 1,000 babies born in Illinois went through withdrawal due to maternal drug use during pregnancy.⁴⁷ Nationally one in 100 babies has Fetal Alcohol Spectrum Disorder (FASD).48

Map 10 shows the rate of drug overdose deaths per 100.000 population in 2016. Statewide, 19 individuals per 100,000 died of drug overdose. Gallatin County had the highest rate (56 per 100,000) while 12 counties reported no overdose deaths. Sixteen counties fall in the High Risk category on this indicator.

TABLE 14. Number of drug overdose deaths and rate per 100,000 population, 2016

RISK LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

County	#	Rate		County	#	Rate		County	#	Rate	
Adams	10	15	LM	Hardin	1	24	НМ	Morgan	5	14	LM
Alexander	1	14	LM	Henderson	0	0	L	Moultrie	0	0	L
Bond	3	18	HM	Henry	4	8	LM	Ogle	13	25	ΗM
Boone	8	15	LM	Iroquois	7	24	HM	Peoria	34	18	ΗM
Brown	1	15	LM	Jackson	12	20	ΗМ	Perry	8	37	Н
Bureau	6	18	HM	Jasper	3	31	Н	Piatt	4	24	ΗM
Calhoun	1	20	ΗM	Jefferson	6	16	LM	Pike	4	25	ΗМ
Carroll	2	14	LM	Jersey	4	18	HM	Pope	0	0	L
Cass	0	0	L	Jo Daviess	2	9	LM	Pulaski	0	0	L
Champaign	23	11	LM	Johnson	1	8	LM	Putnam	2	35	Н
Christian	9	27	HM	Kane	63	12	LM	Randolph	8	24	ΗМ
Clark	2	12	LM	Kankakee	18	16	LM	Richland	0	0	L
Clay	1	7	LM	Kendall	26	21	НМ	Rock Island	17	12	LM
Clinton	6	16	LM	Knox	4	8	LM	St. Clair	41	15	LM
Coles	6	11	LM	Lake	91	13	LM	Saline	5	20	НМ
Cook	1,112	21	HM	LaSalle	19	17	НМ	Sangamon	33	17	ΗM
Crawford	1	5	L	Lawrence	2	12	LM	Schuyler	0	0	L
Cumberland	1	9	LM	Lee	4	12	LM	Scott	1	19	HM
DeKalb	17	16	LM	Livingston	10	27	Н	Shelby	1	5	L
DeWitt	5	31	Н	Logan	6	20	НМ	Stark	2	34	Н
Douglas	2	10	LM	McDonough	4	13	LM	Stephenson	4	9	LM
DuPage	133	14	LM	McHenry	56	18	НМ	Tazewell	24	18	НМ
Edgar	3	17	HM	McLean	23	13	LM	Union	3	17	ΗМ
Edwards	1	15	LM	Macon	19	18	НМ	Vermilion	23	29	Н
Effingham	2	6	L	Macoupin	10	22	НМ	Wabash	4	35	Н
Fayette	5	23	HM	Madison	72	27	Н	Warren	0	0	L
Ford	0	0	L	Marion	11	29	Н	Washington	4	28	Н
Franklin	13	33	Н	Marshall	1	8	LM	Wayne	1	6	L
Fulton	6	17	НМ	Mason	0	0	L	White	0	0	L
Gallatin	3	56	Н	Massac	5	34	Н	Whiteside	4	7	LM
Greene	2	15	LM	Menard	1	8	LM	Will	131	19	HM
Grundy	14	28	Н	Mercer	2	13	LM	Williamson	15	22	ΗM
Hamilton	2	24	HM	Monroe	8	24	НМ	Winnebago	109	38	Н
Hancock	0	0	L	Montgomery	7	24	НМ	Woodford	6	15	LM

Source: IDPH and ACS

Footnote: Deaths in which drug overdose (poisoning) was reported as the underlying cause of death. Data include overdose from any drug,

Source: IDPH and ACS 5-year estimates, 2016.

RISK: DRUG OVERDOSE DEATHS

MAP 10. Rate of drug overdose deaths per 100,000 population, 2016

Footnote: Deaths in which drug overdose (poisoning) was reported as the underlying cause of death. Data include overdose from any drug.

REACH: INCOME ASSISTANCE

MAP 11. Percent of income-eligible children age 5 and under receiving TANF, 2016

34.81% - 89.00%

LOWEST REACH:

Brown
Carroll
Gallatin
Jasper
Pope
Putnam
Scott

HIGHEST REACH:

Pulaski Peoria

STATE AVERAGE: 24.6%

NATIONAL AVERAGE: 32.7%

Footnote: Income eligibility defined as children living below 50 percent of poverty, which is the approximate income limit used by Illinois to determine whether a family meets the requirement of financial need in order to be eligible for TANF cash assistance.

REACH: INCOME **ASSISTANCE**

Some families with limited economic resources receive support from Temporary Assistance for Needy Families (TANF), a federal block grant that helps states fund cash assistance and employment services for pregnant women and families with children. While TANF is federally funded, Illinois is responsible for setting eligibility rules and benefit levels.49

Illinois limits eligibility for TANF cash assistance to households under 50 percent of the federal poverty guidelines. In 2016, 50 percent of the federal poverty threshold for a family of one adult and two children was \$9.669 in annual household income.⁵⁰ The state spends just four percent of its TANF funds on cash assistance, the second lowest among states, and benefit levels are meager.⁵¹ In October 2018, the maximum monthly cash assistance for an adult caring for two children increased for the first time in over a decade to \$520 per month, representing just 31.0 percent of the federal poverty guidelines for 2018.52

Map 11 shows that 24.6 percent of income-eligible children age five and under received TANF cash assistance in 2016. Pulaski County had the highest percentage (88.9 percent) while seven counties reached no income-eligible children (0.0 percent). Overall, only seven counties reached more than half of income-eligible children.

TABLE 15. Number and percent of income-eligible children age 5 and under receiving TANF, 2016

County	#	%		County	#	%		County	#	%	
Adams	57	14.1	LM	Hardin	1	2.9	LM	Morgan	42	27.6	HM
Alexander	80	41.0	Н	Henderson	10	50.0	Н	Moultrie	1	2.3	LM
Bond	8	9.4	LM	Henry	96	32.0	HM	Ogle	32	12.2	LM
Boone	2	0.6	LM	Iroquois	17	6.2	LM	Peoria	1,345	57.3	Н
Brown	0	0.0	L	Jackson	174	29.0	HM	Perry	23	13.2	LM
Bureau	2	1.0	LM	Jasper	0	0.0	L	Piatt	2	7.7	LM
Calhoun	1	6.7	LM	Jefferson	104	24.2	НМ	Pike	18	12.2	LM
Carroll	0	0.0	L	Jersey	12	11.0	LM	Pope	0	0.0	L
Cass	11	13.3	LM	Jo Daviess	12	25.5	HM	Pulaski	48	88.9	Н
Champaign	243	15.6	LM	Johnson	1	2.3	LM	Putnam	0	0.0	L
Christian	22	11.6	LM	Kane	520	17.1	LM	Randolph	39	34.2	HM
Clark	11	12.0	LM	Kankakee	207	19.8	HM	Richland	17	26.2	HM
Clay	13	12.6	LM	Kendall	13	4.3	LM	Rock Island	401	24.2	НМ
Clinton	28	17.7	HM	Knox	146	35.6	Н	Saline	14	5.3	LM
Coles	87	32.2	ΗМ	Lake	491	14.6	LM	Sangamon	819	50.7	Н
Cook	11,102	26.1	HM	LaSalle	75	10.3	LM	Schuyler	2	7.7	LM
Crawford	3	12.0	LM	Lawrence	10	6.3	LM	Scott	0	0.0	L
Cumberland	6	6.1	LM	Lee	22	14.8	LM	Shelby	12	9.0	LM
DeKalb	161	14.9	LM	Livingston	20	19.8	НМ	St. Clair	1,339	40.5	Н
DeWitt	5	3.1	LM	Logan	10	4.9	LM	Stark	3	3.5	LM
Douglas	9	5.3	LM	Macon	516	26.8	НМ	Stephenson	132	74.6	Н
DuPage	334	13.5	LM	Macoupin	33	13.5	LM	Tazewell	92	19.9	HM
Edgar	16	11.1	LM	Madison	407	21.9	НМ	Union	39	58.2	Н
Edwards	7	11.3	LM	Marion	171	42.1	Н	Vermilion	336	23.6	HM
Effingham	7	4.9	LM	Marshall	4	6.3	LM	Wabash	3	3.0	LM
Fayette	40	29.2	НМ	Mason	4	3.9	LM	Warren	37	86.0	Н
Ford	2	2.0	LM	Massac	17	19.8	НМ	Washington	20	24.1	НМ
Franklin	112	28.0	HM	McDonough	39	18.4	HM	Wayne	15	18.5	HM
Fulton	60	21.6	НМ	McHenry	32	3.6	LM	White	1	0.9	LM
Gallatin	0	0.0	L	McLean	193	22.3	HM	Whiteside	45	18.8	HM
Greene	11	13.9	LM	Menard	1	1.1	LM	Will	675	25.1	HM
Grundy	7	4.1	LM	Mercer	8	9.6	LM	Williamson	88	18.0	HM
Hamilton	8	15.4	LM	Monroe	6	25.0	HM	Winnebago	935	24.2	HM
Hancock	5	4.0	LM	Montgomery	10	3.8	LM	Woodford	5	5.3	LM

Source: IDHS and ACS

REACH LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

Footnote: Income eligibility defined as children living below 50 percent of poverty, which is the approximate income limit used by Illinois to determine whether a family meets the requirement of financial need in order to be eligible for TANF cash assistance.

0

Marshall

Clark

Monroe

Macon

27.8%

REACH: CHILD CARE SUBSIDY

MAP 12. Percent of income-eligible children age 5 and under receiving Child Care Assistance Program benefits, FY2016

Footnote: Income eligibility defined as children living below 185 percent of poverty, which is the income eligibility threshold for CCAP. Data are unavailable for some counties because IDHS does not report data for areas in which fewer than 10 children received services.

			• 9	
Jo Davies	ss Winne	ebagd McH	lenry	
		Boone	Lake	
Ca				
		 DeKalb	ne DuPage	Cook
		Ke		
Rock Island	Bureau	•		Vill
Mercer	Putnam	LaSalle Gr	undy	
• • Knox	Marsha		'' Kank	akee
Henderson Warren	Peoria Woodfo	ord		
. 🕘 😐			Ford	quois
ock McDonough Fulton	Tazewell	McLean		
Schuyler	son e	DeWitt		
ms Brown Cass Me	anard Logan	Piatt	Champaign	
		Macon Moultrie	Douglas	•
Greene	Christian	Shelby	Coles	dgar
	•		umberland C	lark
Jersey Macou	Montgomery Fo	ayette		
	Bond	Effingham	Jasper Cro	awford
Madisor St. Clair	Clinton	Clay		
Monroe		•	• •	Wabash
Ranc	Washington Jolph J	efferson	ne Edwards	
	Perry		White	
	Jackson Wi	lliamson Saline	Gallat	
	Union .	Johnson	Hardin	
h through age 12 (Report on A				

REACH: CHILD CARE SUBSIDY

Access to affordable child care is critical for working parents. Subsidies improve parents' ability to access child care, thus helping them obtain and retain employment or attend an approved job training or educational program. Improving parents' access to employment and education are important for the financial stability of the family. When subsidies are used to pay for child care that is high quality, they also contribute to healthy child development.

Illinois provides subsidies for licensed child care to eligible families through the Child Care Assistance Program (CCAP). CCAP can help families pay for care in eligible center- or home-based settings. Families are required to cost-share on a sliding scale based on family size and income. In some counties, wait lists for CCAP subsidies are long, meaning that not all families who need and are eligible for child care subsidies receive them.

Map 12 shows that 27.8 percent of income-eligible children age five and under received CCAP in Fiscal Year 2016. Champaign County reached the highest percentage (42.6 percent) while Marshall County reached the lowest percentage (4.6 percent).

County	#	%		County	#	%		County	#	%	
Adams	522	25.3	HM	Hardin	20	28.6	Н	Morgan	249	29.9	Н
Alexander	84	15.4	LM	Henderson	14	8.6	L	Moultrie	54	7.8	L
Bond	53	10.1	LM	Henry	199	18.1	LM	Ogle	309	21.8	HM
Boone	326	23.5	HM	Iroquois	107	11.4	LM	Peoria	2,034	30.2	Н
Brown	11	7.7	L	Jackson	439	25.2	ΗМ	Perry	92	17.0	LM
Bureau	75	8.7	L	Jasper	26	21.0	НМ	Piatt	52	20.6	HM
Calhoun	*	*	*	Jefferson	304	21.5	НМ	Pike	41	7.2	L
Carroll	39	12.2	LM	Jersey	62	12.7	LM	Pope	*	*	*
Cass	60	11.2	LM	Jo Daviess	66	22.4	НМ	Pulaski	40	14.9	LM
Champaign	2,330	42.6	Н	Johnson	33	14.7	LM	Putnam	*	*	*
Christian	134	17.4	LM	Kane	2,700	18.2	НМ	Randolph	117	17.6	LM
Clark	34	4.8	L	Kankakee	1,002	28.4	Н	Richland	82	18.8	HM
Clay	59	12.9	LM	Kendall	567	24.0	НМ	Rock Island	1,132	20.7	HM
Clinton	148	20.3	НМ	Knox	256	15.4	LM	Saline	213	24.5	HM
Coles	292	16.9	LM	Lake	4,994	30.8	Н	Sangamon	2,174	39.3	Н
Cook	53,941	31.6	Н	LaSalle	351	10.8	LM	Schuyler	39	38.6	Н
Crawford	62	14.6	LM	Lawrence	37	6.5	L	Scott	24	15.2	LM
Cumberland	22	6.1	L	Lee	205	26.3	НМ	Shelby	43	8.9	L
DeKalb	821	29.1	Н	Livingston	93	10.1	LM	St. Clair	2,924	29.7	Н
DeWitt	51	12.0	LM	Logan	117	16.9	LM	Stark	*	*	*
Douglas	77	9.5	LM	Macon	1,412	33.6	Н	Stephenson	525	28.8	Н
DuPage	3,218	21.8	HM	Macoupin	142	10.8	LM	Tazewell	629	22.9	HM
Edgar	63	8.1	L	Madison	1,628	23.3	НМ	Union	43	10.7	LM
Edwards	17	11.1	LM	Marion	354	21.9	НМ	Vermilion	950	25.4	HM
Effingham	167	20.7	HM	Marshall	14	4.6	L	Wabash	25	8.0	L
ayette	87	12.7	LM	Mason	31	6.8	L	Warren	72	9.8	LM
ord	57	13.1	LM	Massac	78	16.0	LM	Washington	30	11.5	LM
Franklin	212	14.5	LM	McDonough	142	18.7	НМ	Wayne	35	6.4	L
ulton	129	12.0	LM	McHenry	1,194	23.8	НМ	White	62	14.6	LM
Gallatin	*	*	*	McLean	1,165	29.1	Н	Whiteside	365	18.3	HM
Greene	29	7.7	L	Menard	60	15.4	LM	Will	4,115	30.5	Н
Grundy	194	16.0	LM	Mercer	44	10.1	LM	Williamson	554	28.7	Н
lamilton	36	26.7	HM	Monroe	118	35.4	Н	Winnebago	3,676	33.4	Н
lancock	50	8.9	L	Montgomery	83	9.3	L	Woodford	103	12.1	LM

Source: IDHS and ACS * Data not available.

Race and ethnicity data not available.

TABLE 16. Number and percent of income-eligible children age 5 and under receiving Child Care Assistance Program benefits, FY2016

REACH LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

Footnote: Income eligibility defined as children living below 185 percent of poverty, which is the income eligibility threshold for CCAP. Data are unavailable for some counties because IDHS does not report data for areas in which fewer than 10 children received services

0

Pope

18.3%

16.3%

REACH: HOUSING ASSISTANCE

MAP 13. Percent of households receiving HUD housing assistance, 2015

REACH: HOUSING ASSISTANCE

Lake

DuPage

Will

 \bigcirc

•

Iroquois

Vermilio

 \bigcirc

Edgar

Clark

Crawford

 \bigcirc

abash

Ford

Champaigr

•

 \bigcirc

Jasper

White

Richland

Kankake

Families with lower household income and without housing assistance are more likely to have high rates of housing instability, which results in doubling up with friends or relatives, living in substandard conditions. frequent moves, eviction, and/or homelessness.53 Such instability can harm both adults and children and is associated with decreased school performance, poor cognitive development, increased health risks, and mental health problems.54

Federal housing programs provide much needed assistance to eligible individuals and their families. Unfortunately, housing assistance programs are not funded at a level adequate to serve all who are eligible. As a result, three out of four eligible households do not receive housing assistance.⁵⁵ While Illinois also funds rental assistance programs, State programs are primarily targeted at special populations or located in concentrated geographic areas.

Map 13 shows the percent of incomeeligible children age five and under receiving housing assistance through the U.S. Department of Housing and Urban Development (HUD) Statewide, 18.3 percent received federal housing assistance in 2015. Alexander County reached the highest percentage (60.1 percent) while Putnam County reached the lowest percentage (0.0 percent).

assistance, 2015

REACH LEVEL: Low - L

County	#	%		County	#	%		County	#	%	
Adams	884	15.2	LM	Hardin	142	56.8	Н	Morgan	725	24.2	HM
Alexander	424	60.1	Н	Henderson	40	9.1	LM	Moultrie	27	2.8	L
Bond	191	18.3	ΗМ	Henry	637	22.1	НM	Ogle	434	13.0	LM
Boone	460	22.5	ΗМ	Iroquois	25	1.4	L	Peoria	4,613	25.7	HM
Brown	84	24.0	ΗМ	Jackson	1,410	15.7	LM	Perry	373	25.8	ΗM
Bureau	352	14.5	LM	Jasper	36	8.3	LM	Piatt	68	9.8	LM
Calhoun	41	13.7	LM	Jefferson	710	23.7	ΗM	Pike	237	21.3	ΗM
Carroll	90	9.0	LM	Jersey	367	28.8	Н	Pope	108	54.0	Н
Cass	48	4.9	L	JoDaviess	139	10.6	LM	Pulaski	149	30.4	Н
Champaign	2,317	8.5	LM	Johnson	153	28.1	ΗМ	Putnam	0	0.0	L
Christian	481	19.3	ΗM	Kane	4,042	13.0	LM	Randolph	259	14.5	LM
Clark	110	10.6	LM	Kankakee	1,372	17.6	LM	Richland	206	15.5	LM
Clay	207	26.4	ΗM	Kendall	429	10.9	LM	RockIsland	4,236	32.7	Н
Clinton	207	14.6	LM	Knox	1,067	19.8	ΗМ	Saline	580	25.3	HM
Coles	773	12.3	LM	Lake	7,832	19.6	ΗM	Sangamon	3,590	19.7	ΗM
Cook	107,958	19.4	ΗМ	LaSalle	1,461	17.7	LM	Schuyler	1	0.3	L
Crawford	17	1.6	L	Lawrence	164	19.3	ΗМ	Scott	98	26.5	ΗM
Cumberland	99	16.5	LM	Lee	350	15.5	LM	Shelby	161	13.9	LM
DeKalb	1,618	14.6	LM	Livingston	388	14.8	LM	St.Clair	5,797	22.5	НM
DeWitt	230	22.5	ΗМ	Logan	374	15.1	LM	Stark	22	7.2	L
Douglas	9	0.7	L	Macon	2,675	29.5	Н	Stephenson	685	15.8	LM
DuPage	5,966	12.0	LM	Macoupin	353	10.9	LM	Tazewell	1,601	19.4	НМ
Edgar	250	16.4	LM	Madison	2,805	12.4	LM	Union	372	34.3	Н
Edwards	74	23.9	ΗМ	Marion	700	23.0	ΗM	Vermilion	1,732	24.8	ΗM
Effingham	472	25.6	ΗМ	Marshall	22	3.7	L	Wabash	165	16.8	LM
Fayette	38	3.5	L	Mason	157	15.0	LM	Warren	317	26.1	ΗM
Ford	133	14.3	LM	Massac	287	26.0	ΗМ	Washington	8	1.0	L
Franklin	741	24.6	НМ	McDonough	681	19.3	ΗМ	Wayne	229	22.0	ΗM
Fulton	712	28.5	Н	McHenry	1,498	11.1	LM	White	145	13.3	LM
Gallatin	120	28.9	Н	McLean	2,006	12.4	LM	Whiteside	688	16.8	LM
Greene	171	19.7	НM	Menard	247	27.4	ΗМ	Will	3,650	13.5	LM
Grundy	334	11.2	LM	Mercer	83	8.9	LM	Williamson	1,425	27.5	HM
Hamilton	74	15.3	LM	Monroe	1	0.1	L	Winnebago	5,081	19.7	ΗM
Hancock	55	5.4	L	Montgomery	283	16.1	LM	Woodford	445	25.0	HM

52 Illinois Risk and Reach Report | Spring 2019

TABLE 17. Number and percent of households receiving HUD housing

_, Low Moderate - LM, High Moderate - HM, High	- -	-
--	------	---

Source: Picture of Subsidized Households and CHAS, HUD

Footnote: HUD housing assistance includes Public Housing, Housing Choice Vouchers, and Project Based Section 8 assistance. To be eligible for these programs, the household must make less than 80% of the Area Median Income (AMI) of the area they are applying to.

REACH: FOOD ASSISTANCE

MAP 14. Percent of income-eligible children age 5 and under receiving SNAP benefits, 2016

OVERALL RISK LEVEL

REACH LEVEL*

77.11% - 94.20%

95.21% - 100.00%

LOWEST REACH:

Moultrie
Douglas
Woodford
Menard
Ford

HIGHEST REACH:

Many counties qualified for highest reach Please refer to Table 18 for details.

STATE AVERAGE: 81.6%

NATIONAL AVERAGE:

Our participation rate estimation results in some counties having a participation rate over 100 percent, designated as 100°. For more information, please refer to the technical manual Angendix 2

Footnote: SNAP participation data are from December 2016. Income eligibility defined as childr iving below 165 percent of poverty, which is the SNAP income eligibility threshold in Illinois

REACH: FOOD ASSISTANCE

The Supplemental Nutrition Assistance Program (SNAP) provides eligible families with benefits to purchase food. Although SNAP is federally funded, Illinois is responsible for setting eligibility rules and program administration.

SNAP income eligibility extends to households with gross income up to 165 percent of poverty in Illinois, a threshold higher than many states. However most participants (86 percent of Illinois SNAP households) live at or below 100 percent of the poverty guideline.⁵⁶

About 40 percent of Illinois SNAP households include children.⁵⁷ Over 12 percent of all participants are preschool-age, and 28.9 percent of participants are school-age.⁵⁸ Adults who had access to SNAP as young children reported better health, and women who had access to SNAP as young children reported improved economic self-sufficiency.59

Map 12 shows that 81.6 percent of all income-eligible children age five and under received SNAP benefits in 2016. Fourteen counties were tied for the highest percentage (100.0 percent) while Moultrie County reached the lowest percent (33.3 percent).60

Our participation rate estimation results in some counties having a participation rate over 100 percent, designated as 100^{*}. For more information, please refer to the technical manual in Appendix 8.

TABLE 18. Number and percent of income-eligible children age 5 and under receiving SNAP benefits, 2016

County	#	%		County	#	%		County	#	%	
Adams	1,558	89.6	НМ	Hardin	107	100*	Н	Morgan	752	100*	Н
Alexander	331	61.8	LM	Henderson	88	59.7	L	Moultrie	184	33.3	L
Bond	243	49.5	L	Henry	1,008	96.2	Н	Ogle	850	70.1	LM
Boone	772	61.5	LM	Iroquois	509	61.0	LM	Peoria	5,881	97.2	Н
Brown	81	66.0	LM	Jackson	1,594	99.6	Н	Perry	351	85.1	ΗM
Bureau	623	81.6	НМ	Jasper	130	100*	Н	Piatt	152	77.9	ΗM
Calhoun	58	77.7	ΗМ	Jefferson	1,068	82.4	ΗМ	Pike	317	59.4	L
Carroll	191	63.6	LM	Jersey	408	100*	Н	Pope	66	100*	Н
Cass	279	57.9	L	Jo Daviess	191	79.3	ΗМ	Pulaski	209	85.0	ΗM
Champaign	4,467	88.4	НМ	Johnson	163	79.0	НМ	Putnam	69	67.3	LM
Christian	710	100*	Н	Kane	11,412	87.3	HМ	Randolph	606	100*	Н
Clark	317	60.4	LM	Kankakee	2,931	95.4	Н	Richland	396	97.7	Н
Clay	264	61.7	LM	Kendall	1,099	64.7	LM	Rock Island	3,813	76.3	LM
Clinton	476	75.9	LM	Knox	1,321	85.7	НМ	Saline	944	100*	Н
Coles	1,100	67.7	LM	Lake	10,096	69.9	LM	Sangamon	4,698	89.0	ΗM
Cook	125,004	80.0	ΗM	LaSalle	2,532	86.0	ΗM	Schuyler	76	87.6	ΗM
Crawford	328	90.8	HМ	Lawrence	290	54.7	L	Scott	77	49.5	L
Cumberland	164	49.3	L	Lee	542	76.4	LM	Shelby	314	68.6	LM
DeKalb	2,105	79.4	НM	Livingston	630	79.8	НM	St. Clair	7,296	80.2	HM
DeWitt	258	65.6	LM	Logan	665	100*	Н	Stark	90	52.9	L
Douglas	302	40.9	L	Macon	3,695	92.2	НM	Stephenson	1,283	82.5	ΗM
DuPage	9,724	75.7	LM	Macoupin	920	75.6	LM	Tazewell	2,437	100*	Н
Edgar	354	53.5	L	Madison	5,388	86.6	НM	Union	462	100*	Н
Edwards	123	91.8	ΗM	Marion	1,429	98.3	Н	Vermilion	2,981	87.9	HM
Effingham	547	74.7	LM	Marshall	178	66.2	LM	Wabash	279	99.7	Н
Fayette	447	71.6	LM	Mason	279	74.4	LM	Warren	399	63.7	LM
Ford	185	44.7	L	Massac	541	100*	Н	Washington	190	82.9	ΗM
Franklin	1,131	84.9	ΗM	McDonough	552	81.9	НМ	Wayne	315	62.2	LM
Fulton	741	74.5	LM	McHenry	3,016	67.7	LM	White	331	80.5	ΗM
Gallatin	101	58.4	L	McLean	2,990	85.0	ΗM	Whiteside	1,267	75.3	LM
Greene	266	87.7	ΗM	Menard	151	43.4	L	Will	11,465	97.3	Н
Grundy	672	65.3	LM	Mercer	236	57.8	L	Williamson	1,811	100*	Н
Hamilton	130	100*	Н	Monroe	155	54.2	L	Winnebago	9,799	97.3	Н
Hancock	256	48.5	L	Montgomery	562	74.6	LM	Woodford	309	42.5	L

Source: IDHS and ACS Footnote: SNAP participation data are from December 2016. Income eligibility defined as children living below 165 percent of poverty, which is the SNAP income eligibility threshold in Illinois.

FIGURE 20. Food Assistance by each Race/Ethnicity

REACH LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

REACH: PERMANENCY

MAP 15. Percent of children age 5 and under attaining permanent homes within 12 months of entry into substitute care, FY2016

REACH LEVEL*

- NO DATA
- 0.10% 13.13%
- 13.14% 26.75%

26.76% - 71.45%

LOWEST REACH:

Many counties reach. Please refer to Table 19 for details

HIGHEST REACH:

Jo Daviess Clark Jackson

STATE AVERAGE: 15.1%

NATIONAL AVERAGE:

Data not available**

e. Precise national comparison data do not exist. For context, 66 percent of children age 18 nder are adopted within 12 months of termination of parental rights (Child Welfare Outcor Report to Congress, HHS ACF, Appendix FIF-5)

Footnote: Permanency includes reunification with families, guardianship by a relative, or ad Counties with 0s did not have any children attaining permanency within 12 months of enter ub title the second second

REACH: PERMANENCY

Most children found to be abused or neglected remain in their own home - 82.3 percent nationally but those assessed as being unsafe are placed in out-ofhome care.⁶¹ Substitute care includes foster care, relative care, institutional care, or group home care. Children under one year old are most likely to be placed.62

In placing children into substitute care, the goal is to create as little instability as possible, yet many children experience unstable placements. Nationally, two-thirds of children placed in foster homes experience a placement change in the first two years, with nearly half of all children experiencing a placement change in the first six months. Caregiver instability exacerbates children's existing vulnerabilities, places them at increased risk for inadequate medical care, and increases their likelihood of attachment disturbances and both internalizing and externalizing behaviors.63

Map 15 shows that about 15.1 percent of all children age five and under attained permanent homes within 12 months of entry into substitute care in Fiscal Year 2016. Shelby County has the highest percentage (71.4 percent) while 33 counties reported no children achieving permanency within a year.

TABLE 19. Number and percent of children age 5 and under attaining permanent homes within 12 months of entry into substitute care, FY2016

County Adams 4 17 * * Alexander Bond 0 0.0 Boone 1 7 Brown * * 0 0 Bureau * Calhoun * * Carroll Cass 0 0 Champaign 12 23 Christian 7 3 Clark 3 4 Clay 2 3 Clinton 0 0 Coles 5 26 Cook 47 7. 0 0 Crawford Cumberland 2 DeKalb 2 10 DeWitt 0 0 Douglas 0 0 DuPage 6 1 Edgar 2 3 0 0 Edwards Effingham 3 21 Fayette 3 Ford 0 0 Franklin Fulton 1 7 Gallatin Greene 1 1/ Grundy Hamilton 0 0

Hancock 0 0

REACH LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

	County	#	%		County	#	%	
НМ	Hardin	*	*	*	Morgan	1	8.3	LM
*	Henderson	1	12.5	LM	Moultrie	2	22.2	НМ
L	Henry	2	15.4	ΗМ	Ogle	1	4.8	LM
LM	Iroquois	0	0.0	L	Peoria	27	20.0	ΗM
*	Jackson	7	41.2	Н	Perry	0	0.0	L
L	Jasper	2	40.0	Н	Piatt	1	16.7	НМ
*	Jefferson	3	20.0	ΗМ	Pike	0	0.0	L
*	Jersey	1	16.7	ΗМ	Роре	0	0.0	L
L	Jo Daviess	1	50.0	н	Pulaski	0	0.0	L
HM	Johnson	1	20.0	ΗМ	Putnam	0	0.0	L
Н	Kane	9	17.3	ΗМ	Randolph	2	20.0	ΗМ
Н	Kankakee	1	10.0	LM	Richland	0	0.0	L
Н	Kendall	1	6.7	LM	Rock Island	3	12.0	LM
L	Knox	3	13.0	LM	Saline	1	33.3	Н
ΗM	Lake	13	18.3	ΗМ	Sangamon	16	18.2	ΗМ
LM	LaSalle	0	0.0	L	Schuyler	0	0.0	L
L	Lawrence	0	0.0	L	Scott	*	*	*
Н	Lee	0	0.0	L	Shelby	5	71.4	Н
LM	Livingston	1	25.0	ΗМ	St. Clair	18	18.2	ΗМ
L	Logan	6	24.0	ΗМ	Stark	0	0.0	L
L	Macon	24	34.3	Н	Stephenson	3	20.0	ΗМ
LM	Macoupin	3	13.6	ΗМ	Tazewell	2	2.7	LM
Н	Madison	19	18.1	ΗМ	Union	1	12.5	LM
L	Marion	3	9.4	LM	Vermilion	5	12.8	LM
ΗM	Marshall	0	0.0	L	Wabash	0	0.0	L
ΗM	Mason	0	0.0	L	Warren	1	25.0	ΗМ
L	Massac	0	0.0	L	Washington	0	0.0	L
НМ	McDonough	3	20.0	ΗМ	Wayne	1	4.8	LM
LM	McHenry	2	6.7	LM	White	0	0.0	L
НМ	McLean	5	10.2	LM	Whiteside	3	17.6	НМ
ΗM	Menard	0	0.0	L	Will	9	11.5	LM
HM	Mercer	0	0.0	L	Williamson	2	7.4	LM
L	Monroe	0	0.0	L	Winnebago	32	23.4	ΗМ
L	Montgomery	2	22.2	ΗМ	Woodford	0	0.0	L
	HM I <	IcountyHarclinHardinHandersonIHenryIIroquoisIJacksonJacksonJacksonIJarseyIJeffersonIJohnsonIKaneIKaneIIcountIKanaIIcountIIcountIIcountIIcountIKaneIIcountIIcountIIcountIIcountIIcountIIcountIMacountIMacountIMassacIMcLeanIMcLeanIMcLeanIMcLeanIMcLeanIMcLeanIMcLeanIMarseI <td< td=""><td>County#Hardin**Henderson1*Henry2LHenry2LJackson7*Jackson7LJasper2*Jefferson3*Jefferson1LJonbaviess1LJohnson1HKane9HKankakee1LKana3HKana3LLa&3LLawrence0LLogan6LMacoupin3HMacison19LMarion3HMassac0HMcLeany2HMcLeany3HMarion3HMarshall0LMacoupin3HMarshall0HMcLeany2HMcLeany2HMcLeany3HMcLeany3HMcLeany3HMcLeany3HMcLeany3HMenard0HMercer0HMercer0HMortoe0HMortoe0HMortoe0HMortoe0HMortoe0HMortoe0HMortoe0<td< td=""><td>LongCounty#Hardin-Henderson112.5LHenry215.4LIroquois00.0IJackson741.2LJackson741.2LJackson740.0Jackson740.0Jackson740.0Jackson10.020.0JJefferson320.0JJefferson10.010.0LJonson150.0HKane10.0K16.713.0KJon1.06.7Kane10.00.0HKanox313.0KJasele0.00.0HLawrence00.0LLogan11.0LMacoupin313.0LMacoupin31.0LMarion191.1LMassac00.0LMcLeany2.11.0HMcLeany30.0HMcLeany00.0HMercer00.0HMercer00.0HMoroe00.0HMercer00.0HMercer00.0HMercer00.0HMoroe00.0HMercer00.0<!--</td--><td>ICounty#%Hardin··Handerson1.012.5Henderson1.015.4Henry2.015.4Imagenia0.01.0Jackson741.2Jackson741.2Jackson20.040.0Jaren20.040.0Jaren10.010.0Jaren10.010.0Jaren10.010.0Jonariess1.050.0Mana917.3MaKane1.0Kana1.01.0Kana1.01.0Kana1.01.0Kana1.01.0Kana3.01.0Kana1.01.0Kana1.01.0Kana1.01.0La</td></td></td<><td>HMHardin#%KMorganHHenderson1.112.5LMMoultrieLHenry215.4HMOgleLMIroquois00.0LPeoriaJackson7.441.2HPietrLJasper2.040.0HPiatJefferson3.020.0HMPikeJonaviess150.0HPopeLJonaviess1.020.0HMRandolphHJonson120.0HMRandolphHKane97.3HMRandolphHKankakee10.0LMSaineHKankakee11.0LMSaineHLake31.3.0LMSaineLLaken10.0LSchulerLLawence0.0LSchulerLLawence0.0LSchulerLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMa</td><td>HMHardin*#%XCounty##HHardin**Morgan1*Henderson112.5LMMoultrice2LHenry215.4HMOgle1LMIroquois00.0LPeoria27Jackson741.2HPerry0LJasper240.0HPiatt1Jafferson320.0HMPike0Jo Daviess150.0HPulaski0Jo Daviess150.0HPulaski0MJohnson120.0HMPulaski0HKane917.3HMRandolph2HKankakee10.0LRichland0HKane97.3HMSangamon16HKankakee10.0LSchuler1LKankakee10.0LSchuler1LKankakee10.0LSchuler1LLagen00.0LSchuler1LKankakee1SchulerSchuler1LLSchuler1Schuler1LLSchuler1Schuler1LLSchuler1Schuler1LLSchuler1Schuler1<</td><td>HomCounty#%County#%HardinMorgan18.3'IHenderson11.2.5LMMoultrie22.2.2LHenry21.5.4HMOgle14.8LMIroquois00.0LPeoria2702.0.0'IJackson741.2HPerry0.00.0LJasper240.0HPiat1.01.0.1Jasper240.0HMPike0.00.0LJasper150.0HMPike0.00.0Jefferson32.0.0HMPulaski00.0Jonson150.0HMPulaski0.00.0HKana917.3HMRandolph2.0.2HKankakee10.0LMRandolph1.0.2HKankakee110.0LMRandolph1.0.3HKanca31.0.1LMSalare1.0.3LKanca10.0LMSalare1.0.3HLake11.0.2LMSalare1.0.3LLawrence00.0LSchuler1.0.3LLawrence125.0HMStark1.0.3LLawrence125.0HMStark1.0.3LLawrence125.</td></td></td<>	County#Hardin**Henderson1*Henry2LHenry2LJackson7*Jackson7LJasper2*Jefferson3*Jefferson1LJonbaviess1LJohnson1HKane9HKankakee1LKana3HKana3LLa&3LLawrence0LLogan6LMacoupin3HMacison19LMarion3HMassac0HMcLeany2HMcLeany3HMarion3HMarshall0LMacoupin3HMarshall0HMcLeany2HMcLeany2HMcLeany3HMcLeany3HMcLeany3HMcLeany3HMcLeany3HMenard0HMercer0HMercer0HMortoe0HMortoe0HMortoe0HMortoe0HMortoe0HMortoe0HMortoe0 <td< td=""><td>LongCounty#Hardin-Henderson112.5LHenry215.4LIroquois00.0IJackson741.2LJackson741.2LJackson740.0Jackson740.0Jackson740.0Jackson10.020.0JJefferson320.0JJefferson10.010.0LJonson150.0HKane10.0K16.713.0KJon1.06.7Kane10.00.0HKanox313.0KJasele0.00.0HLawrence00.0LLogan11.0LMacoupin313.0LMacoupin31.0LMarion191.1LMassac00.0LMcLeany2.11.0HMcLeany30.0HMcLeany00.0HMercer00.0HMercer00.0HMoroe00.0HMercer00.0HMercer00.0HMercer00.0HMoroe00.0HMercer00.0<!--</td--><td>ICounty#%Hardin··Handerson1.012.5Henderson1.015.4Henry2.015.4Imagenia0.01.0Jackson741.2Jackson741.2Jackson20.040.0Jaren20.040.0Jaren10.010.0Jaren10.010.0Jaren10.010.0Jonariess1.050.0Mana917.3MaKane1.0Kana1.01.0Kana1.01.0Kana1.01.0Kana1.01.0Kana3.01.0Kana1.01.0Kana1.01.0Kana1.01.0La</td></td></td<> <td>HMHardin#%KMorganHHenderson1.112.5LMMoultrieLHenry215.4HMOgleLMIroquois00.0LPeoriaJackson7.441.2HPietrLJasper2.040.0HPiatJefferson3.020.0HMPikeJonaviess150.0HPopeLJonaviess1.020.0HMRandolphHJonson120.0HMRandolphHKane97.3HMRandolphHKankakee10.0LMSaineHKankakee11.0LMSaineHLake31.3.0LMSaineLLaken10.0LSchulerLLawence0.0LSchulerLLawence0.0LSchulerLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMa</td> <td>HMHardin*#%XCounty##HHardin**Morgan1*Henderson112.5LMMoultrice2LHenry215.4HMOgle1LMIroquois00.0LPeoria27Jackson741.2HPerry0LJasper240.0HPiatt1Jafferson320.0HMPike0Jo Daviess150.0HPulaski0Jo Daviess150.0HPulaski0MJohnson120.0HMPulaski0HKane917.3HMRandolph2HKankakee10.0LRichland0HKane97.3HMSangamon16HKankakee10.0LSchuler1LKankakee10.0LSchuler1LKankakee10.0LSchuler1LLagen00.0LSchuler1LKankakee1SchulerSchuler1LLSchuler1Schuler1LLSchuler1Schuler1LLSchuler1Schuler1LLSchuler1Schuler1<</td> <td>HomCounty#%County#%HardinMorgan18.3'IHenderson11.2.5LMMoultrie22.2.2LHenry21.5.4HMOgle14.8LMIroquois00.0LPeoria2702.0.0'IJackson741.2HPerry0.00.0LJasper240.0HPiat1.01.0.1Jasper240.0HMPike0.00.0LJasper150.0HMPike0.00.0Jefferson32.0.0HMPulaski00.0Jonson150.0HMPulaski0.00.0HKana917.3HMRandolph2.0.2HKankakee10.0LMRandolph1.0.2HKankakee110.0LMRandolph1.0.3HKanca31.0.1LMSalare1.0.3LKanca10.0LMSalare1.0.3HLake11.0.2LMSalare1.0.3LLawrence00.0LSchuler1.0.3LLawrence125.0HMStark1.0.3LLawrence125.0HMStark1.0.3LLawrence125.</td>	LongCounty#Hardin-Henderson112.5LHenry215.4LIroquois00.0IJackson741.2LJackson741.2LJackson740.0Jackson740.0Jackson740.0Jackson10.020.0JJefferson320.0JJefferson10.010.0LJonson150.0HKane10.0K16.713.0KJon1.06.7Kane10.00.0HKanox313.0KJasele0.00.0HLawrence00.0LLogan11.0LMacoupin313.0LMacoupin31.0LMarion191.1LMassac00.0LMcLeany2.11.0HMcLeany30.0HMcLeany00.0HMercer00.0HMercer00.0HMoroe00.0HMercer00.0HMercer00.0HMercer00.0HMoroe00.0HMercer00.0 </td <td>ICounty#%Hardin··Handerson1.012.5Henderson1.015.4Henry2.015.4Imagenia0.01.0Jackson741.2Jackson741.2Jackson20.040.0Jaren20.040.0Jaren10.010.0Jaren10.010.0Jaren10.010.0Jonariess1.050.0Mana917.3MaKane1.0Kana1.01.0Kana1.01.0Kana1.01.0Kana1.01.0Kana3.01.0Kana1.01.0Kana1.01.0Kana1.01.0La</td>	ICounty#%Hardin··Handerson1.012.5Henderson1.015.4Henry2.015.4Imagenia0.01.0Jackson741.2Jackson741.2Jackson20.040.0Jaren20.040.0Jaren10.010.0Jaren10.010.0Jaren10.010.0Jonariess1.050.0Mana917.3MaKane1.0Kana1.01.0Kana1.01.0Kana1.01.0Kana1.01.0Kana3.01.0Kana1.01.0Kana1.01.0Kana1.01.0La	HMHardin#%KMorganHHenderson1.112.5LMMoultrieLHenry215.4HMOgleLMIroquois00.0LPeoriaJackson7.441.2HPietrLJasper2.040.0HPiatJefferson3.020.0HMPikeJonaviess150.0HPopeLJonaviess1.020.0HMRandolphHJonson120.0HMRandolphHKane97.3HMRandolphHKankakee10.0LMSaineHKankakee11.0LMSaineHLake31.3.0LMSaineLLaken10.0LSchulerLLawence0.0LSchulerLLawence0.0LSchulerLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMacon125.0HMStarkLMa	HMHardin*#%XCounty##HHardin**Morgan1*Henderson112.5LMMoultrice2LHenry215.4HMOgle1LMIroquois00.0LPeoria27Jackson741.2HPerry0LJasper240.0HPiatt1Jafferson320.0HMPike0Jo Daviess150.0HPulaski0Jo Daviess150.0HPulaski0MJohnson120.0HMPulaski0HKane917.3HMRandolph2HKankakee10.0LRichland0HKane97.3HMSangamon16HKankakee10.0LSchuler1LKankakee10.0LSchuler1LKankakee10.0LSchuler1LLagen00.0LSchuler1LKankakee1SchulerSchuler1LLSchuler1Schuler1LLSchuler1Schuler1LLSchuler1Schuler1LLSchuler1Schuler1<	HomCounty#%County#%HardinMorgan18.3'IHenderson11.2.5LMMoultrie22.2.2LHenry21.5.4HMOgle14.8LMIroquois00.0LPeoria2702.0.0'IJackson741.2HPerry0.00.0LJasper240.0HPiat1.01.0.1Jasper240.0HMPike0.00.0LJasper150.0HMPike0.00.0Jefferson32.0.0HMPulaski00.0Jonson150.0HMPulaski0.00.0HKana917.3HMRandolph2.0.2HKankakee10.0LMRandolph1.0.2HKankakee110.0LMRandolph1.0.3HKanca31.0.1LMSalare1.0.3LKanca10.0LMSalare1.0.3HLake11.0.2LMSalare1.0.3LLawrence00.0LSchuler1.0.3LLawrence125.0HMStark1.0.3LLawrence125.0HMStark1.0.3LLawrence125.

Source: Children and Family Research Center, University of Illinois at Urbana-Champaign

Footnote: Permanency includes reunification with families, guardianship by a relative, or adoption. Counties with Os did not have any children attaining permanency within 12 months of entering substitute care. * Data not available.

Fiscal Resources

Budgets reflect choices and priorities. To illustrate the choices the State has made for investing in families with young children age five and under, the Fiscal Scan analyzes publicly available data from the Governor's Office of Management and Budget and various state agencies (for details, see the Methodology-Fiscal Analysis section in the Introduction). Summaries entitled Fiscal Resources are included at the end of each domain section (Family Stability, Health, and Early Care and Education) and feature figures and tables that summarize the investments assigned to that domain.

Figure 22 illustrates that within the total Illinois Operating Budget for Fiscal Year 2018 (\$63.684 billion), a 4.9 percent share (\$3.127 billion) is spent on families with young children. This includes all funds appropriated by the State, from both federal and state sources of revenue.

FIGURE 22. Illinois State Operating Budget and Total Spending for Families with Young Children, FY2018 (in millions)⁶⁴

In addition, Illinois benefits from \$754 million in federal funds that do not pass through state agencies but which the Risk and Reach Advisory Council determined were important to families with young children. These investments are the Supplemental Nutrition Assistance Program, SNAP, which goes directly to families with young children, and Head Start (including Early Head Start) funds that go directly to administering agencies. The addition of these federal funds bring the total amount of investment in families with young children to \$3.881 billion (as illustrated in Figure 23).

FIGURE 23. Total Spending for Families with Young Children from both State Operating Budget and Select Federal Programs, FY2018 (in millions)⁶⁵

Source: Risk and Reach analysis of Governor's Office of Management and Budget, Illinois Comptroller's Office, Illinois Department of Children and Family Services, Illinois Department of Healthcare and Family Services, Illinois Department of Human Services, Illinois Department of Public Health, Illinois Head Start Association, Illinois State Board of Education, and U.S. Department of Agriculture data.

When analyzing the \$3.881 billion by domain of child well-being (Family Stability, Health and Early Care and Education), Figure 24 summarizes the total investment per domain combining three sources (state, federal appropriated by the State, and federal SNAP/Head Start/Early Head Start). Family Stability investments total \$535 million, Health investments comprise the largest share with \$1.771 billion, and Early Care and Education investments total \$1.576 billion.

FIGURE 24. Resources for Families with Young Children by Domain of Child Well-Being, FY2018 (in millions)⁶⁶

\$1,771, 46%

Achieving family stability requires financial security and economic opportunity as well as stability in the home environment and family relationships. Resources considered in this section focus on strengthening and supporting these foundational components.

Two primary agencies - the Illinois Department of Human Services (IDHS) and the Illinois Department of Children and Family Services (IDCFS) — implement critical programs and services that support family stability. Figure 25 details the dollars spent to provide Economic Support such as income assistance and housing services, and Child and Family Support such as foster care and family reunification. Further details of Economic Support programs and Child and Family Support programs are provided in Figures 26-27. Together, these programs support families and strive to ensure that Illinois children have the stable family environments they need to thrive.

FIGURE 25. Family Stability Expenditures by Category, FY2018

FIGURE 26. Economic Support Expenditures by Program, FY201867

FIGURE 27. Child and Family Support Expenditures by Program, FY201868

TABLE 20. Family Stability Expenditures (in millions)

Category/Program	FY18 Actual Expenditures	Funding Source	Implementing Agency
Economic Support			
Income Assistance (TANF) ⁶⁹	\$32.84	State and Federal	IDHS
Housing Assistance ⁷⁰	\$18.26	State	IDHS
Food Assistance (SNAP)	\$393.64	Federal	N/A
Economic Support Subtotal	\$444.74		
Child and Family Support			
Family Maintence ⁷¹	\$18.80	State	IDCFS
Substitute Care	\$51.41	State	IDCFS
Adoption Services	\$15.35	State	IDCFS
Counseling Services	\$0.36	State	IDCFS
Other	\$0.54	State and Federal	IDCFS
Early Childhood Project	\$2.70	State	IDCFS
School Readiness Initiative ⁷²	\$0.59	State	IDCFS
Child and Family Support Subtotal	\$89.76		

FAMILY STABILITY TOTAL \$534.51

Source: Governor's Office of Management and Budget, Illinois Comptroller's Office, Illinois Department of Children and Family Services, Illinois Department of Human Services, and U.S. Department of Agriculture.

Sources: Illinois Department of Children and Family Services and the Illinois Comptroller's Office. DCFS data includes clientspecific payment information readily available for youth age 0-5. According to the agency, further research would be required to approximate the full cost of services for this population.

Health

Any consideration of child well-being must examine health and wellness. In fact, a strong body of research indicates that supporting health and wellness during the first five years of life can positively affect development and set the stage for optimal growth in childhood, adolescence, and adulthood.73

Consistent access to health care increases the likelihood that a child will receive appropriate vaccinations, screenings, and preventive care, important components of ensuring healthy development.⁷⁴ By contrast, young children whose health is not supported often experience negative developmental impacts, for example spending less time in school, finding it more difficult to focus, and having lower academic achievement.75

While access to health care is an important component of promoting health for young children, focusing on health insurance enrollment alone may not adequately address healthy development in the early years.⁷⁶ The concept of health must go beyond medical care to consider factors including nutrition and mental health.

A robust definition of children's health and wellness should consider maternal health as well as children's exposure to risks in their environment and community.

Four indicators measure a specific type of health risk facing young children and their mothers. These Health Risk Indicators are: severe maternal morbidity, preterm births, lead exposure, and exposure to violent crime.

To explore how well Illinois is supporting the health of children and mothers, included are five Health Reach Indicators: prenatal care utilization, child nutrition, immunizations, lead testing, and mental health services.

Lastly, to identify the public dollars available to support health, the Fiscal Scan includes state and federal investments in three program areas: nutrition, health care and family services, and maternal and child health.

KEY FINDINGS

Thirty-five of Illinois's 102 counties (34.3 percent) are at High Risk on at least one of the four Health Risk Indicators, with 8 counties (7.8 percent) scoring in the High Risk category on two or more of the four Health Risk Indicators.

Fifty-one of Illinois's 102 counties (50.0 percent) are considered High Reach on at least one of the five Health Reach Indicators, with 21 counties (20.6 percent) scoring in the High Reach category on at least two of the five indicators.

Investments in Health represent a state-federal partnership. Public resources for health care and family services, which includes health coverage programs like All Kids and Moms & Babies, dwarf funding for other areas of health like nutrition, lead screening, and immunizations.

RISK: MATERNAL MORBIDITY

Severe Maternal Morbidity (SMM) includes unexpected outcomes of labor and delivery that result in significant consequences to a woman's health.⁷⁷ Nationally the rate of SMM nearly tripled over the last two decades.78

The increase in SMM is not fully understood, but there are likely several causal factors, including changes in the overall health and age of women giving birth and inconsistent obstetric approaches to identifying and managing complications.⁷⁹ The problem is also exacerbated by a lack of data on maternal health outcomes, hindering rigorous analysis and effective solutions.

Nationwide. African American women experience SMM (240.7 per 10,000 deliveries in 2015) at a much higher rate than White (113.6) or Latinx women (161.3).80

Map 16 shows the rate of SMM in Illinois was 51 per 10.000 deliveries in 2016-2017. Because SMM is a rare outcome, data were only available at the county-level for 18 out of 102 counties. Of the counties reporting data, Vermilion County had the highest rate (73 per 10,000) while St. Clair had the lowest (23 per 10,000). Five counties fall into the High Risk category for this indicator.

TABLE 21. Number of deliveries with severe maternal morbidity and rate per 10,000 deliveries, 2016-2017

RISK LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

County	#	Rate		County	#	Rate		County	#	Rate	
Adams	*	*	*	Hardin	*	*	*	Morgan	*	*	*
Alexander	*	*	*	Henderson	*	*	*	Moultrie	*	*	*
Bond	*	*	*	Henry	*	*	*	Ogle	*	*	*
Boone	*	*	*	Iroquois	*	*	*	Peoria	20	41	LM
Brown	*	*	*	Jackson	*	*	*	Perry	*	*	*
Bureau	*	*	*	Jasper	*	*	*	Piatt	*	*	*
Calhoun	*	*	*	Jefferson	*	*	*	Pike	*	*	*
Carroll	*	*	*	Jersey	*	*	*	Роре	*	*	*
Cass	*	*	*	Jo Daviess	*	*	*	Pulaski	*	*	*
Champaign	14	31	L	Johnson	*	*	*	Putnam	*	*	*
Christian	*	*	*	Kane	44	36	LM	Randolph	*	*	*
Clark	*	*	*	Kankakee	*	*	*	Richland	*	*	*
Clay	*	*	*	Kendall	10	38	LM	Rock Island	16	61	Н
Clinton	*	*	*	Knox	*	*	*	St. Clair	11	23	L
Coles	*	*	*	Lake	67	44	LM	Saline	*	*	*
Cook	804	65	Н	LaSalle	10	44	LM	Sangamon	27	61	Н
Crawford	*	*	*	Lawrence	*	*	*	Schuyler	*	*	*
Cumberland	*	*	*	Lee	*	*	*	Scott	*	*	*
DeKalb	*	*	*	Livingston	*	*	*	Shelby	*	*	*
DeWitt	*	*	*	Logan	*	*	*	Stark	*	*	*
Douglas	*	*	*	McDonough	*	*	*	Stephenson	*	*	*
DuPage	98	47	LM	McHenry	29	47	LM	Tazewell	11	38	LM
Edgar	*	*	*	McLean	17	44	LM	Union	*	*	*
Edwards	*	*	*	Macon	13	51	HM	Vermilion	14	73	Н
Effingham	*	*	*	Macoupin	*	*	*	Wabash	*	*	*
Fayette	*	*	*	Madison	*	*	*	Warren	*	*	*
Ford	*	*	*	Marion	*	*	*	Washington	*	*	*
Franklin	*	*	*	Marshall	*	*	*	Wayne	*	*	*
Fulton	*	*	*	Mason	*	*	*	White	*	*	*
Gallatin	*	*	*	Massac	*	*	*	Whiteside	*	*	*
Greene	*	*	*	Menard	*	*	*	Will	61	41	LM
Grundy	*	*	*	Mercer	*	*	*	Williamson	*	*	*
Hamilton	*	*	*	Monroe	*	*	*	Winnebago	43	63	Н
Hancock	*	*	*	Montgomery	*	*	*	Woodford	*	*	*

Source: IDPH

Footnote: Data include 2016 and 2017 Illinois hospital discharge data. Severe maternal morbidity includes unintended outcomes of the process of labor and delivery that result in significant short-term or long-term consequences to a woman's health. Data are unavailable for some counties because IDPH does not report data for areas with fewer than 10 cases. *Data not available

RISK: MATERNAL MORBIDITY

MAP 16. Rate of severe maternal morbidity per 10,000 deliveries, 2016-2017

outcomes of the process of labor and delivery that result in significant short-term or long-term consequences to a woman's health. Data are unavailable for some counties because IDPH does not report data for areas with fewer than 10 cases.

RISK: PRETERM BIRTHS

A premature infant is one who is born before 37 weeks gestation. Premature babies often require longer hospital stays, but they may also experience long-term cognitive and physical effects, including asthma, vision and hearing loss, intellectual disabilities, and challenging behavior.81

Premature birth often coincides with low birth weight (LBW).82 Nationwide, 70 percent of LBW babies are born premature.⁸³ Premature birth is also often related to infant deaths. In 2010, more than a third of infant deaths were from complications related to preterm births, making prematurity the most frequent cause of infant mortality.84

Many factors can elevate risk of preterm births, including smoking, alcohol, illicit drug use, domestic violence, very high stress levels, maternal depression, and prolonged work hours involving standing.85 For many risk factors, adequate prenatal care is an important intervention.

Map 17 shows 10.3 percent of Illinois infants were born premature in 2016. County averages ranged from a low of 5.0 percent in Moultrie County to a high of 16.0 percent in Scott County. Thirteen counties fell into the High Risk category.

TABLE 22. Number and percent of preterm births, 2016

RISK LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

County	#	%		County	#	%		County	#	%	
Adams	87	10.3	HM	Hardin	3	8.6	LM	Morgan	37	11.1	ΗМ
Alexander	8	10.1	НМ	Henderson	7	9.9	LM	Moultrie	10	5.0	L
Bond	10	6.8	L	Henry	61	11.3	HM	Ogle	48	8.6	LM
Boone	47	8.2	LM	Iroquois	37	11.1	HM	Peoria	257	10.1	НМ
Brown	7	10.3	HM	Jackson	67	10.1	HM	Perry	28	12.9	Н
Bureau	49	14.0	Н	Jasper	7	6.1	L	Piatt	22	11.5	НМ
Calhoun	7	14.6	Н	Jefferson	75	14.9	Н	Pike	15	7.7	L
Carroll	12	8.7	LM	Jersey	22	10.0	HM	Роре	2	7.4	L
Cass	19	10.4	HM	Jo Daviess	11	6.8	L	Pulaski	7	8.2	LM
Champaign	227	9.5	LM	Johnson	8	6.5	L	Putnam	7	14.0	Н
Christian	38	11.2	HM	Kane	717	10.7	HM	Randolph	34	9.9	LM
Clark	16	8.9	LM	Kankakee	159	11.7	HM	Richland	14	6.8	L
Clay	12	7.5	L	Kendall	170	10.7	HM	Rock Island	167	9.4	LM
Clinton	44	10.7	HM	Knox	48	8.4	LM	St. Clair	392	12.1	HM
Coles	51	9.7	LM	Lake	769	10.0	HM	Saline	38	11.6	ΗМ
Cook	7,008	10.5	HM	LaSalle	121	9.6	LM	Sangamon	273	12.2	НМ
Crawford	17	7.8	LM	Lawrence	14	9.0	LM	Schuyler	8	13.6	Н
Cumberland	13	10.3	HM	Lee	20	5.8	L	Scott	8	16.0	Н
DeKalb	96	8.8	LM	Livingston	27	6.9	L	Shelby	25	9.8	LM
DeWitt	17	10.2	HM	Logan	35	11.8	HM	Stark	4	6.3	L
Douglas	29	11.5	HM	McDonough	23	8.1	LM	Stephenson	50	10.7	ΗМ
DuPage	1,013	9.3	LM	McHenry	306	9.9	LM	Tazewell	137	9.2	LM
Edgar	20	10.8	HM	McLean	224	11.1	HM	Union	11	6.2	L
Edwards	7	9.7	LM	Macon	173	13.0	Н	Vermilion	141	13.8	Н
Effingham	42	9.3	LM	Macoupin	59	12.5	Н	Wabash	16	9.6	LM
Fayette	21	7.9	LM	Madison	273	8.9	LM	Warren	19	8.6	LM
Ford	16	9.9	LM	Marion	51	10.1	HM	Washington	10	6.6	L
Franklin	56	11.9	HM	Marshall	14	12.0	HM	Wayne	19	9.0	LM
Fulton	34	9.2	LM	Mason	8	6.1	L	White	19	12.3	HM
Gallatin	8	15.7	Н	Massac	18	11.0	HM	Whiteside	50	8.2	LM
Greene	10	7.6	L	Menard	17	12.9	Н	Will	813	10.4	HM
Grundy	67	11.1	HM	Mercer	17	11.6	HM	Williamson	92	11.7	ΗM
Hamilton	13	14.1	Н	Monroe	19	5.5	L	Winnebago	391	10.5	HM
Hancock	13	7.0	L	Montgomery	32	11.1	HM	Woodford	39	9.5	LM

Source: IDPH

Footnote: Preterm births include infants born before 37 weeks.

RISK: PRETERM BIRTHS

MAP 17. Percent of preterm births, 2016

Footnote: Preterm births include infants born before 37 weeks.

RISK: LEAD **EXPOSURE**

Unborn babies and young children are more susceptible to absorbing and retaining lead. Prenatal lead exposure can affect brain development and can lead to premature birth and low birth weight.⁸⁶ Childhood lead exposure can lead to headaches, stomach pain, challenging behavior, anemia, and problems with healthy brain development.⁸⁷

Lead paint is the most common way children get lead poisoning. While banned in the U.S., older homes, toys, and other products manufactured outside the country have been found to contain lead.⁸⁸ Lead can also be found in contaminated soil and in water that flows through old lead pipes or faucets.⁸⁹ Treatment for lead exposure is recommended for all children with a blood lead level of five micrograms per deciliter or greater.90

Map 18 shows that 3.5 percent of Illinois children age six and under who were tested for blood lead were found to have elevated blood lead levels in 2016. County averages ranged from a low of 0.0 percent in Putnam County to a high of 13.7 percent in Stephenson County. Sixteen counties fell into the High Risk category.

TABLE 23.	Number a	and percent	of tested	children	age 6 and	d under	with
elevated bl	ood lead	levels, 201	6				

RISK LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

County	#	%		County	#	%		County	#	%	
Adams	165	10.9	Н	Hardin	6	12.0	Н	Morgan	52	8.2	НМ
Alexander	12	9.4	Н	Henderson	6	8.8	HM	Moultrie	8	4.7	LM
Bond	5	2.2	L	Henry	56	7.3	HM	Ogle	15	3.4	LM
Boone	19	2.0	L	Iroquois	20	6.4	HM	Peoria	223	10.5	Н
Brown	6	8.9	Н	Jackson	20	2.0	L	Perry	21	6.7	HM
Bureau	32	8.1	HM	Jasper	3	3.3	LM	Piatt	8	5.3	LM
Calhoun	1	3.7	LM	Jefferson	23	4.3	LM	Pike	13	5.1	LM
Carroll	14	5.6	LM	Jersey	9	2.1	L	Pope	4	12.5	Н
Cass	20	7.0	HM	Jo Daviess	10	4.5	LM	Pulaski	4	5.9	HM
Champaign	28	1.4	L	Johnson	22	12.9	Н	Putnam	0	0.0	L
Christian	19	3.1	LM	Kane	344	3.0	LM	Randolph	13	3.5	LM
Clark	8	2.9	LM	Kankakee	101	4.6	LM	Richland	11	5.2	LM
Clay	17	6.2	HM	Kendall	13	1.7	L	Rock Island	239	8.1	HM
Clinton	3	0.9	L	Knox	89	10.5	Н	St. Clair	238	4.4	LM
Coles	26	2.9	LM	Lake	131	1.6	L	Saline	23	4.5	LM
Cook	3,699	2.8	LM	LaSalle	99	6.4	HM	Sangamon	183	6.5	HM
Crawford	9	3.6	LM	Lawrence	15	5.8	HM	Schuyler	7	8.4	HM
Cumberland	4	2.4	L	Lee	9	5.3	LM	Scott	9	7.2	HM
DeKalb	24	1.7	L	Livingston	27	5.2	LM	Shelby	13	4.7	LM
DeWitt	25	12.2	Н	Logan	19	5.1	LM	Stark	16	12.4	Н
Douglas	14	5.6	LM	McDonough	32	8.0	HM	Stephenson	159	13.7	Н
DuPage	126	1.7	L	McHenry	49	2.6	LM	Tazewell	46	3.2	LM
Edgar	16	5.0	LM	McLean	115	3.8	LM	Union	12	5.7	HM
Edwards	3	3.4	LM	Macon	270	10.4	Н	Vermilion	44	2.9	LM
Effingham	16	3.3	LM	Macoupin	38	5.8	HM	Wabash	18	9.7	Н
Fayette	13	3.8	LM	Madison	125	3.0	LM	Warren	27	7.8	НМ
Ford	18	11.6	Н	Marion	39	5.5	LM	Washington	7	4.9	LM
Franklin	49	8.4	ΗM	Marshall	20	8.4	HM	Wayne	11	3.5	LM
Fulton	35	8.6	HM	Mason	27	11.7	Н	White	11	4.7	LM
Gallatin	2	2.2	L	Massac	10	7.2	HM	Whiteside	58	5.5	LM
Greene	12	5.1	LM	Menard	4	4.2	LM	Will	257	2.6	LM
Grundy	19	3.7	LM	Mercer	20	8.7	HM	Williamson	114	10.6	Н
Hamilton	2	1.7	L	Monroe	20	6.0	HM	Winnebago	246	5.1	LM
Hancock	16	6.7	HM	Montgomery	17	3.5	LM	Woodford	14	3.2	LM

Source: IDPH

Footnote: Elevated blood level defined as equal to or greater than 5 microg/dL. Public health intervention level for blood lead exposure was $\ge 10 \ \mu\text{g/dL}$ until early 2019 when the intervention level was decreased to $\ge 5 \ \mu\text{g/dL}$.

Source: IDPH, 2016.

RISK: LEAD EXPOSURE

MAP 18. Percent of tested children age 6 and under with elevated blood lead levels, 2016

Footnote: Elevated blood level defined as equal to or greater than 5 microg/dL. Public health intervention level for blood lead exposure was \geq 10 µg/dL until early 2019 when the intervention level was decreased to \geq 5 µg/dL.

RISK: VIOLENCE EXPOSURE

According to the National Survey of Children's Exposure to Violence, 18.5 percent of children age two to five had directly witnessed violence, 11.6 percent saw a family member assault another family member during the previous year, and 3.9 percent were exposed to a shooting.⁹¹ The same survey found that 40.9 percent of children had multiple direct experiences of violence, crime, or abuse in the previous year.92

The cumulative effect of repeated exposure to violence is especially harmful for child well-being.93 Children exposed to violence may suffer from difficulties forming relationships, regressive behavior, anxiety and depression, and aggression.⁹⁴ They may be more prone to delinguency, further victimization, and involvement with the child welfare and juvenile justice systems.95

County-level data on children's exposure to violence is not available, therefore the violent crime rate serves as a proxy.⁹⁶ Map 19 shows that the violent crime rate was 436 per 100,000 population in 2016. Winnebago County had the highest rate (1,000 per 100,000) while Jasper, Scott, and Stark Counties had the lowest rate (0 per 100,000). Ten counties fall in the High Risk category on this indicator.

TABLE 24. Number of violent crimes and rate per 100,000 people, 2016

RISK LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

County	#	Rate		County	#	Rate		County	#	Rate	
Adams	235	345	НМ	Hardin	6	104	LM	Morgan	81	227	HM
Alexander	78	909	Н	Henderson	*	*	*	Moultrie	1	7	L
Bond	6	34	LM	Henry	59	119	LM	Ogle	23	43	LM
Boone	93	156	LM	Iroquois	38	117	LM	Peoria	1,062	551	Н
Brown	10	138	LM	Jackson	239	393	ΗМ	Perry	32	143	LM
Bureau	42	111	LM	Jasper	0	0	L	Piatt	27	144	LM
Calhoun	*	*	*	Jefferson	241	626	н	Pike	15	86	LM
Carroll	10	69	LM	Jersey	36	157	LM	Роре	*	*	*
Cass	66	487	Н	Jo Daviess	33	148	LM	Pulaski	*	*	*
Champaign	1,030	490	Н	Johnson	34	267	HM	Putnam	1	13	L
Christian	31	88	LM	Kane	1,004	189	LM	Randolph	21	57	LM
Clark	14	85	LM	Kankakee	297	264	HM	Richland	62	390	HM
Clay	10	65	LM	Kendall	106	84	LM	Rock Island	530	350	ΗМ
Clinton	42	108	LM	Knox	162	309	HM	St. Clair	1,530	585	Н
Coles	174	322	ΗМ	Lake	1,028	144	LM	Saline	92	363	НM
Cook	34,730	665	Н	LaSalle	138	121	LM	Sangamon	1,539	768	Н
Crawford	51	265	ΗМ	Lawrence	16	98	LM	Schuyler	10	145	LM
Cumberland	9	75	LM	Lee	65	181	LM	Scott	0	0	L
DeKalb	306	292	ΗМ	Livingston	63	151	LM	Shelby	2	8	L
DeWitt	9	56	LM	Logan	45	148	LM	Stark	0	0	L
Douglas	39	198	LM	McDonough	86	250	ΗМ	Stephenson	57	117	LM
DuPage	789	85	LM	McHenry	294	96	LM	Tazewell	365	272	ΗM
Edgar	40	220	ΗМ	McLean	491	280	НМ	Union	34	185	LM
Edwards	2	29	LM	Macon	434	396	HM	Vermilion	631	802	Н
Effingham	52	147	LM	Macoupin	80	169	LM	Wabash	15	131	LM
Fayette	27	117	LM	Madison	708	267	HM	Warren	44	230	НM
Ford	39	271	ΗМ	Marion	154	375	НМ	Washington	33	218	ΗM
Franklin	41	102	LM	Marshall	16	132	LM	Wayne	21	129	LM
Fulton	31	77	LM	Mason	41	280	НМ	White	30	201	LM
Gallatin	8	122	LM	Massac	45	302	ΗM	Whiteside	113	200	LM
Greene	31	230	ΗМ	Menard	11	81	LM	Will	1,069	156	LM
Grundy	37	73	LM	Mercer	15	73	LM	Williamson	86	121	LM
Hamilton	4	46	LM	Monroe	8	23	LM	Winnebago	2,840	1000	Н
Hancock	12	63	LM	Montgomery	28	91	LM	Woodford	22	51	LM

Source: ISP

Footnote: Violent crime is defined by the Federal Bureau of Investigation's Uniform Crime Reporting Program as murder and nonnegligent manslaughter, rape, robbery, and aggravated assault. Data are unavailable for some counties because ISP identified them as noncompliant/failure to report.

Race and ethnicity data not available.

RISK: VIOLENCE EXPOSURE

MAP 19. Rate of violent crimes per 100,000 people, 2016

VIOLENT CRIMES RATE

436

386

)	100	200	300	400	500	600	700	800	900	100

Source: ISP. National Rate: FBI, 2016.

as murder and nonnegligent manslaughter, rape, robbery, and aggravated assault. Data are unavailable for some counties because ISP identified them as noncompliant/failure to report.
0

REACH: PRENATAL CARE

MAP 20. Percent of births with adequate or above prenatal care utilization, 2016

REACH: PRENATAL CARE

Prenatal care comprises a combination of preventive measures shown to have significant positive impacts on maternal health, infant health, and child development.⁹⁷ Prenatal care also facilitates early detection of potentially harmful complications in both mother and fetus.⁹⁸ As a result, women who do not have prenatal care or who begin care later in the pregnancy are at higher risk of poor pregnancy outcomes, including preterm births, low birth weight, and infant and maternal morbidity and mortality.99

Prenatal visits also prepare mothers to provide proper care for their infant after the baby is born. Providers educate expectant mothers on nutrition for their newborn, breastfeeding, immunizations, and illness prevention.¹⁰⁰ Utilization of prenatal care increases the likelihood of improving children's longterm health.¹⁰¹

We use the Kotelchuck Index as a measure of prenatal care utilization.¹⁰² Map 20 shows that 74.3 percent of Illinois births received adequate or above prenatal care utilization in 2016. County averages ranged from a low of 65.2 percent in St. Clair County to a high of 95.6 percent in Jasper County.

care utilization, 2016

Source: IDPH

72 Illinois Risk and Reach Report | Spring 2019

TABLE 25. Number and percent of births with adequate or above prenatal

REACH LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

%		County	#	%		County	#	%	
7.2	НМ	Hardin	31	93.9	н	Morgan	254	79.4	LM
4.7	L	Henderson	64	90.1	Н	Moultrie	144	72.7	L
4.0	ΗМ	Henry	442	82.3	LM	Ogle	481	86.7	ΗМ
5.4	HM	Iroquois	263	79.7	LM	Peoria	1,962	78.0	L
9.7	Н	Jackson	494	84.2	НМ	Perry	160	86.0	HM
6.2	НМ	Jasper	109	95.6	Н	Piatt	166	86.9	HM
2.9	L	Jefferson	413	85.2	НМ	Pike	162	83.1	LM
4.8	НМ	Jersey	173	80.5	LM	Pope	23	88.5	HM
3.7	LM	Jo Daviess	144	90.0	Н	Pulaski	62	80.5	LM
1.7	LM	Johnson	96	84.2	НМ	Putnam	45	90.0	Н
6.6	ΗМ	Kane	4,626	71.8	L	Randolph	252	76.1	L
2.8	LM	Kankakee	995	75.5	L	Richland	165	85.5	HM
9.0	ΗМ	Kendall	1,279	82.4	LM	Rock Island	1,510	85.8	ΗM
8.4	НМ	Knox	466	81.2	LM	Saline	263	86.5	ΗM
4.1	ΗМ	Lake	5,890	79.0	LM	Sangamon	1,849	82.8	LM
6.5	L	LaSalle	1,090	87.4	НМ	Schuyler	54	93.1	Н
5.6	ΗМ	Lawrence	129	84.9	НM	Scott	39	81.3	LM
8.0	ΗМ	Lee	297	86.8	ΗM	Shelby	218	85.8	ΗM
0.1	LM	Livingston	311	80.2	LM	St. Clair	2,011	65.2	L
3.7	НМ	Logan	268	93.4	Н	Stark	54	84.4	ΗM
2.8	L	Macon	1,047	79.6	LM	Stephenson	414	89.8	Н
0.1	LM	Macoupin	387	83.2	LM	Tazewell	1,042	81.9	LM
4.2	HМ	Madison	2,332	79.1	LM	Union	146	88.0	ΗM
4.5	ΗМ	Marion	428	86.3	ΗM	Vermilion	833	82.0	LM
2.0	Н	Marshall	104	89.7	Н	Wabash	145	90.1	Н
1.5	LM	Mason	104	89.7	Н	Warren	175	79.5	LM
4.3	ΗМ	Massac	127	81.9	LM	Washington	129	87.2	ΗM
2.6	LM	McDonough	230	81.3	LM	Wayne	169	82.0	LM
8.4	ΗМ	McHenry	2,479	81.6	LM	White	131	85.6	ΗM
7.5	НМ	McLean	1,513	76.4	L	Whiteside	521	86.3	HM
2.4	L	Menard	119	90.2	Н	Will	5,652	74.4	L
2.4	LM	Mercer	127	87.6	НМ	Williamson	623	86.6	HM
4.3	ΗМ	Monroe	278	86.9	ΗМ	Winnebago	3,068	83.4	LM
8.2	ΗМ	Montgomery	250	87.4	ΗМ	Woodford	329	81.4	LM

Footnote: Adequate prenatal care defined using the Kotelchuck Index, which categorizes prenatal care as inadequate, intermediate, adequate, and adequate plus based on the date when prenatal care was initiatied and the number of prenatal visits

REACH: CHILD NUTRITION

MAP 21. Percent of income-eligible children age 4 and under receiving WIC benefits, 2016

REACH LEVEL*

- 38.16% 56.77%
- 56.78% 75.40%

75.41% - 100.00%

LOWEST REACH:

Calhoun Menard Pope Moultrie

HIGHEST REACH:

Hardin

STATE AVERAGE:

61.4%

NATIONAL AVERAGE: 52.2%

otnote: WIC data are from December 2016. Income eligibility defined as children living below 185. rcent of poverty, which is the income eligibility threshold for WIC.

REACH: CHILD NUTRITION

Proper nutrition, particularly in the first three years of life, has implications for a child's future physical health and cognition. Children living in homes that are food insecure are sick more often, recover more slowly, and are more likely to be hospitalized.¹⁰³ Iron deficiency in early life, the most prevalent nutritional deficiency in the United States, has been linked to persistent cognitive delays, attention deficits, and behavior challenges, even after treatment.¹⁰⁴

Several federal programs aim to improve child nutrition. The largest such program focused on young children is the Special Supplemental Nutrition Program for Women, Infants and Children (WIC), which serves pregnant and nursing women, infants, and children age four and under with limited economic resources. Unfortunately, children's participation in WIC decreases significantly as age increases, and many young children miss out on this important nutritional support.¹⁰⁵

Map 21 shows that 61.4 percent of income-eligible Illinois children age four and under received WIC in 2016. County averages ranged from a low of 8.5 percent in Calhoun County to a high of 100.0 percent in Hardin, Jasper, and Washington counties.106

Our participation rate estimation results in some counties having a participation rate over 100 percent, designated as 100*. For more information, please refer to the technical manual in Appendix 8.

TABLE 26. Number and percent of income-eligible children age 4 and under receiving WIC benefits, 2016

County	#	%		County	#	%		County	#	%	
Adams	926	55.5	LM	Hardin	65	100*	н	Morgan	483	66.3	НМ
Alexander	229	51.0	LM	Henderson	21	14.6	L	Moultrie	130	21.7	L
Bond	250	57.6	НМ	Henry	606	64.1	НМ	Ogle	612	51.3	LM
Boone	624	54.4	LM	Iroquois	262	33.1	L	Peoria	3,555	60.0	HM
Brown	47	37.6	L	Jackson	863	56.5	LM	Perry	338	79.2	Н
Bureau	339	46.9	LM	Jasper	132	100*	Н	Piatt	111	52.9	LM
Calhoun	8	8.5	L	Jefferson	629	51.6	LM	Pike	142	29.1	L
Carroll	206	72.5	НМ	Jersey	233	55.0	LM	Роре	13	17.8	L
Cass	244	63.2	НМ	JoDaviess	211	86.1	н	Pulaski	99	43.4	LM
Champaign	2,397	51.4	LM	Johnson	145	76.7	Н	Putnam	44	46.3	LM
Christian	408	60.5	НМ	Kane	10,672	86.1	н	Randolph	421	66.4	HM
Clark	229	36.8	L	Kankakee	1,731	59.3	НМ	Richland	374	93.7	Н
Clay	262	65.7	НМ	Kendall	887	44.7	LM	RockIsland	3,491	73.5	HM
Clinton	268	44.2	LM	Knox	772	52.4	LM	Saline	512	62.3	HM
Coles	582	41.2	LM	Lake	10,274	77.2	н	Sangamon	3,192	68.8	HM
Cook	87,551	60.3	НМ	LaSalle	1,609	59.1	НМ	Schuyler	81	92.0	Н
Crawford	284	74.0	НМ	Lawrence	213	46.1	LM	Scott	95	79.2	Н
Cumberland	106	35.0	L	Lee	439	66.1	НМ	Shelby	261	66.1	HM
DeKalb	1,398	57.7	НМ	Livingston	382	48.3	LM	St.Clair	4,746	58.2	ΗM
DeWitt	149	44.9	LM	Logan	346	56.4	LM	Stark	53	34.0	L
Douglas	196	28.4	L	Macon	1,982	57.3	НМ	Stephenson	898	58.2	HM
DuPage	8,402	68.1	НМ	Macoupin	508	46.5	LM	Tazewell	1,386	61.2	HM
Edgar	243	40.8	LM	Madison	3,875	66.1	НМ	Union	327	91.9	Н
Edwards	61	45.9	LM	Marion	950	69.5	НМ	Vermilion	1,918	61.5	HM
Effingham	410	57.5	НМ	Marshall	120	50.0	LM	Wabash	259	93.5	Н
Fayette	337	55.1	LM	Mason	245	66.8	ΗМ	Warren	396	61.0	HM
Ford	175	57.2	ΗМ	Massac	281	69.7	НМ	Washington	225	100*	Н
Franklin	612	48.1	LM	McDonough	370	58.2	НМ	Wayne	212	42.4	LM
Fulton	393	45.1	LM	McHenry	3,080	73.3	нм	White	237	66.0	ΗM
Gallatin	34	21.7	L	McLean	1,787	54.0	LM	Whiteside	1,064	65.1	HM
Greene	184	53.8	LM	Menard	33	10.3	L	Will	7,255	65.8	HM
Grundy	345	35.6	L	Mercer	156	45.2	LM	Williamson	1,228	71.9	HM
Hamilton	69	52.7	LM	Monroe	123	45.1	LM	Winnebago	6,196	67.7	HM
Hancock	195	44.4	LM	Montgomery	492	66.9	ΗМ	Woodford	259	37.6	L
Source: IDHS and A	ACS										

eligibility threshold for WIC

REACH LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

Footnote: WIC data are from December 2016. Income eligibility defined as children living below 185 percent of poverty, which is the income

age four and under. State and county level data are only for children

REACH: IMMUNIZATION

MAP 22. Percent of children age 19-35 months who completed the combined 7 vaccine series, 2016

HIGHEST REACH:

Pope Clay Fayette

STATE AVERAGE: 58.8%

NATIONAL AVERAGE:

70.7%

Footnote: The combined seven vaccine series (4:3:1:4-5S) includes 4 or more doses of diphtheria and tetanus (DTaP), 3 or more doses of polio, 1 or more doses of measles-mumps-(MMR), Haemophilus influenzae type b (Hib) full series (3 or 4 doses, depending on product received), 3 or more doses of hepatitis B (HepB), 1 or more doses of Varicella, and 4 or more of Pneumococcal Conjugate (PCV).

REACH: IMMUNIZATION

U.S. children routinely receive vaccines that protect them from more than a dozen diseases including measles, polio, tetanus, diphtheria, and pertussis. Most of these diseases are now at their lowest levels in history. Vaccines prevent approximately 14 million cases of disease per year and save 33,000 lives in the United States alone, but approximately 300 children in the United States still die from vaccine-preventable diseases annually.¹⁰⁷

Immunizations are important in preventing outbreaks of preventable communicable disease.¹⁰⁸ If outbreaks do occur, they may be fatal for children who are too young to be immunized and for those who are immunocompromised. Communities with pockets of unvaccinated and undervaccinated populations are at increased risk for outbreaks.

Vaccines work best when they are given at certain ages. Map 22 shows that 58.8 percent of Illinois children age 19 to 35 months had completed the combined seven vaccine series in 2016.¹⁰⁹ County averages ranged from a low of 36.7 percent in St. Clair County to a high of 85.7 percent in Pope County.

the combined 7 vaccine series, 2016

	Ì		ĺ		ĺ	1	1	l .	1	1	1
County	#	%		County	#	%		County	#	%	
Adams	759	57.3	LM	Hardin	4	57.1	LM	Morgan	215	49.2	L
Alexander	62	58.5	LM	Henderson	24	63.2	LM	Moultrie	66	67.3	НМ
Bond	101	55.8	LM	Henry	420	64.1	LM	Ogle	376	69.9	ΗM
Boone	307	59.8	LM	Iroquois	164	53.6	L	Peoria	2,230	68.4	HM
Brown	37	60.7	LM	Jackson	416	61.8	LM	Perry	152	73.8	НM
Bureau	204	62.6	LM	Jasper	59	67.0	НМ	Piatt	145	75.1	Н
Calhoun	17	65.4	ΗМ	Jefferson	337	69.5	НМ	Pike	149	78.4	Н
Carroll	65	57.5	LM	Jersey	167	71.1	НМ	Pope	18	85.7	Н
Cass	102	65.0	LM	Jo Daviess	102	58.3	LM	Pulaski	31	55.4	L
Champaign	2,016	64.2	LM	Johnson	50	51.5	L	Putnam	35	81.4	Н
Christian	159	50.2	L	Kane	4,326	65.3	НМ	Randolph	230	75.4	Н
Clark	59	59.6	LM	Kankakee	770	51.2	L	Richland	179	82.5	Н
Clay	166	84.7	Н	Kendall	563	49.5	L	Rock Island	1,685	75.2	Н
Clinton	291	70.8	HM	Knox	445	63.1	LM	Saline	137	58.5	LM
Coles	206	57.7	LM	Lake	6,026	64.0	LM	Sangamon	1,456	49.7	L
Cook	41,351	56.3	LM	LaSalle	743	64.4	LM	Schuyler	53	72.6	HM
Crawford	173	74.6	Н	Lawrence	129	52.4	L	Scott	26	72.2	ΗM
Cumberland	62	63.9	LM	Lee	197	73.5	ΗМ	Shelby	108	73.5	ΗМ
DeKalb	724	65.0	ΗМ	Livingston	272	65.2	ΗМ	St. Clair	1,236	36.7	L
DeWitt	127	64.5	LM	Logan	195	54.3	L	Stark	45	83.3	Н
Douglas	111	63.8	LM	Macon	1,392	78.6	Н	Stephenson	426	69.0	ΗМ
DuPage	6,314	58.0	LM	Macoupin	265	61.9	LM	Tazewell	1,089	68.8	ΗМ
Edgar	141	77.5	Н	Madison	2,152	71.3	ΗМ	Union	106	62.7	LM
Edwards	40	78.4	Н	Marion	337	66.1	НМ	Vermilion	634	54.3	L
Effingham	317	64.7	LM	Marshall	93	68.4	НM	Wabash	104	77.6	Н
Fayette	193	82.8	Н	Mason	88	67.7	НМ	Warren	85	60.3	LM
Ford	94	75.8	Н	Massac	94	60.3	LM	Washington	84	61.3	LM
Franklin	287	61.5	LM	McDonough	198	64.3	LM	Wayne	177	84.7	Н
Fulton	296	80.0	Н	McHenry	1,522	51.3	L	White	88	64.2	LM
Gallatin	32	74.4	ΗМ	McLean	1,331	52.1	L	Whiteside	327	65.9	ΗМ
Greene	77	67.5	ΗМ	Menard	65	48.1	L	Will	3,974	53.6	L
Grundy	262	63.4	LM	Mercer	104	73.8	ΗM	Williamson	545	61.8	LM
Hamilton	25	65.8	HM	Monroe	80	52.6	L	Winnebago	2,051	59.1	LM
Hancock	112	65.9	HM	Montgomery	153	61.7	LM	Woodford	295	67.4	HM
Source: IDPH											

Conjugate (PCV).

TABLE 27. Number and percent of children age 19-35 months who completed

REACH LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

Footnote: The combined seven vaccine series (4:3:1:4:5:1:4-FS) includes 4 or more doses of diphtheria and tetanus (DTaP), 3 or more doses of polio, 1 or more doses of measles-mumps-rubella (MMR), Haemophilus influenzae type b (Hib) full series (3 or 4 doses, depending on product type received), 3 or more doses of hepatitis B (HepB), 1 or more doses of Varicella, and 4 or more doses of Pneumococcal

REACH: LEAD TESTING

MAP 23. Percent of children age 6 and under tested for blood lead levels, 2016

REACH: I FAD TESTING

The effects of lead exposure are both irreversible and often slow to appear, thus interventions are best focused on prevention and early detection.¹¹⁰ Current best practices focus on targeted rather than universal screening.¹¹¹ The Centers for Disease Control and Prevention (CDC) support universal screening in high prevalence areas with increased risk factors, including greater than 27 percent of housing built before 1950 and populations in which the percentage of oneand two-year-olds with elevated blood lead levels is greater than 12 percent.¹¹² Because a fetus's blood lead level matches its mother's blood lead level, it is important for a mother to know if she is at risk of lead exposure, underscoring the importance of prenatal care.¹¹³

Map 23 shows that 21.5 percent of children age six and under were tested for blood lead levels in 2016. County averages ranged from a low of 6.1 percent in Kendall County to a high of 37.8 percent in Scott County.

TABLE 28. Number and percent of children age 6 and under tested for blood lead levels, 2016

County	#	%		County	#	%		County	#	%	
Adams	1,513	25.4	Н	Hardin	50	17.9	LM	Morgan	631	24.6	Н
Alexander	128	19.8	ΗМ	Henderson	68	14.2	LM	Moultrie	173	12.9	L
Bond	227	20.3	ΗМ	Henry	762	19.6	ΗМ	Ogle	444	11.6	L
Boone	930	21.3	ΗМ	Iroquois	313	14.3	LM	Peoria	2,124	11.7	L
Brown	68	16.8	LM	Jackson	1,010	24.0	ΗМ	Perry	313	20.8	HM
Bureau	394	15.1	LM	Jasper	92	11.0	L	Piatt	151	12.0	L
Calhoun	27	7.3	L	Jefferson	537	16.1	LM	Pike	253	20.7	НМ
Carroll	248	25.9	Н	Jersey	430	26.1	Н	Роре	32	17.8	LM
Cass	283	26.6	Н	Jo Daviess	220	15.1	LM	Pulaski	68	16.3	LM
Champaign	2,005	12.6	L	Johnson	171	21.0	НМ	Putnam	68	19.6	HM
Christian	620	23.6	ΗМ	Kane	11,460	23.0	ΗМ	Randolph	370	15.9	LM
Clark	275	20.7	ΗМ	Kankakee	2,198	23.3	НМ	Richland	214	15.7	LM
Clay	277	24.4	Н	Kendall	786	6.1	L	Rock Island	2,949	22.9	ΗM
Clinton	363	12.6	L	Knox	846	23.2	ΗМ	Saline	507	25.2	Н
Coles	892	25.0	Н	Lake	8,159	13.7	LM	Sangamon	2,810	16.8	LM
Cook	130,594	28.1	Н	LaSalle	1,544	18.3	LM	Schuyler	83	19.0	ΗM
Crawford	254	17.3	LM	Lawrence	259	21.3	ΗМ	Scott	124	37.8	Н
Cumberland	166	17.6	LM	Lee	171	6.9	L	Shelby	282	17.0	LM
DeKalb	1,396	16.4	LM	Livingston	526	18.9	ΗМ	St. Clair	5,459	23.1	ΗM
DeWitt	205	17.0	LM	Logan	372	18.3	LM	Stark	129	31.0	Н
Douglas	252	13.3	LM	Macon	2,600	28.2	Н	Stephenson	1,161	32.4	Н
DuPage	7,388	9.5	L	Macoupin	656	19.9	ΗМ	Tazewell	1,437	12.6	L
Edgar	321	25.0	Н	Madison	4,171	18.9	ΗМ	Union	213	16.2	LM
Edwards	88	17.1	LM	Marion	706	21.0	НМ	Vermilion	1,501	20.1	HM
Effingham	479	15.4	LM	Marshall	240	27.2	Н	Wabash	185	20.4	ΗM
Fayette	349	20.9	ΗМ	Mason	231	23.2	НМ	Warren	350	22.3	HM
Ford	154	13.9	LM	Massac	138	11.4	L	Washington	145	13.9	LM
Franklin	582	17.3	LM	McDonough	401	19.4	НМ	Wayne	313	23.0	HM
Fulton	406	16.6	LM	McHenry	1,881	7.7	L	White	235	18.5	LM
Gallatin	93	26.3	Н	McLean	3,032	20.9	ΗМ	Whiteside	1,059	22.7	HM
Greene	236	22.9	ΗМ	Menard	95	9.9	L	Will	9,873	16.8	LM
Grundy	513	11.3	L	Mercer	230	19.9	ΗМ	Williamson	1,075	19.8	HM
Hamilton	115	17.3	LM	Monroe	333	13.1	L	Winnebago	4,824	19.4	ΗM
Hancock	239	17.3	LM	Montgomery	479	22.0	HM	Woodford	451	12.9	L

Source: IDPH

FIGURE 34. Lead Testing by each Race/Ethnicity

REACH LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

REACH: MENTAL HEALTH SERVICES

MAP 24. Percent of children age 5 and under enrolled in All Kids who received mental health services through All Kids, FY2018

REACH: MENTAL HEALTH **SERVICES**

Behavioral health conditions affect a substantial number of children in the U.S.¹¹⁴ Conditions include mental illnesses such as anxiety disorders, major depression, bipolar disorder, schizophrenia, and post-traumatic stress disorder. Children with behavioral health needs may require a range of services, from outpatient counseling or prescription drugs to inpatient treatment.

As the only source of funding for some specialized behavioral health services, and as a major source of insurance coverage for children from families with limited economic resources, Medicaid plays a key role in covering and financing behavioral health care.¹¹⁵ In total, 11 percent of all children nationwide who were eligible for Medicaid based on income had a behavioral health diagnosis as of 2011.¹¹⁶

Map 24 shows that 5.9 percent of children age five and under who receive health coverage through the Illinois Department of Healthcare and Family Services's (IDHFS) medical assistance program received mental and behavioral health services in Fiscal Year 2018.¹¹⁷ Services range from mental health assessment and individual treatment plan development to individual and family therapy.¹¹⁸ County averages ranged from a low of 3.9 percent in Stephenson County to a high of 26.0 percent in Clark County.

TABLE 29. Number and percent of children age 5 and under enrolled in All Kids who received mental health services through All Kids, FY2018

County	#	%		County	#	%		County	#	%	
Adams	262	9.8	НМ	Hardin	*	*	*	Morgan	124	9.9	HM
Alexander	*	*	*	Henderson	*	*	*	Moultrie	*	*	*
Bond	*	*	*	Henry	79	6.1	LM	Ogle	104	7.7	LM
Boone	76	5.4	LM	Iroquois	47	6.4	LM	Peoria	523	6.6	LM
Brown	*	*	*	Jackson	101	4.7	LM	Perry	30	7.2	LM
Bureau	74	6.9	LM	Jasper	11	6.1	LM	Piatt	*	*	*
Calhoun	*	*	*	Jefferson	118	7.3	LM	Pike	42	8.3	ΗМ
Carroll	15	5.2	LM	Jersey	56	8.3	HM	Pope	*	*	*
Cass	58	8.4	НМ	JoDaviess	17	4.8	LM	Pulaski	30	5.1	LM
Champaign	390	6.0	LM	Johnson	17	7.9	НМ	Putnam	7	7.5	LM
Christian	78	7.3	LM	Kane	1,016	5.2	LM	Randolph	84	7.1	LM
Clark	8	26.0	Н	Kankakee	161	4.0	L	Richland	114	7.5	LM
Clay	*	*	*	Kendall	94	5.7	LM	RockIsland	292	5.0	LM
Clinton	29	4.0	L	Knox	120	6.2	LM	Saline	153	10.5	HM
Coles	351	7.0	LM	Lake	693	4.5	L	Sangamon	509	7.5	LM
Cook	9,261	5.3	LM	LaSalle	191	5.3	LM	Schuyler	*	*	*
Crawford	50	8.9	НМ	Lawrence	*	*	*	Scott	7	6.2	LM
Cumberland	*	*	*	Lee	46	6.1	LM	Shelby	*	*	*
DeKalb	129	4.3	L	Livingston	89	10.1	НM	St.Clair	424	4.7	LM
DeWitt	45	11.7	Н	Logan	94	9.6	ΗМ	Stark	10	6.0	LM
Douglas	*	*	*	Macon	346	7.4	LM	Stephenson	72	3.9	L
DuPage	1,461	8.8	НМ	Macoupin	109	8.6	HM	Tazewell	338	8.9	HM
Edgar	*	*	*	Madison	553	6.8	LM	Union	72	10.3	HM
Edwards	18	10.3	НМ	Marion	167	7.8	ΗМ	Vermilion	226	5.6	LM
Effingham	9	12.5	Н	Marshall	20	8.7	НМ	Wabash	62	14.8	Н
Fayette	37	6.3	LM	Mason	42	9.5	HM	Warren	42	6.3	LM
Ford	27	8.8	НМ	Massac	44	6.1	LM	Washington	21	9.5	ΗМ
Franklin	153	9.2	НМ	McDonough	56	6.5	LM	Wayne	56	13.0	Н
Fulton	70	6.7	LM	McHenry	340	6.3	LM	White	30	8.6	HM
Gallatin	14	7.6	LM	McLean	305	6.8	LM	Whiteside	139	7.1	LM
Greene	33	9.7	НМ	Menard	19	11.6	Н	Will	697	4.1	L
Grundy	44	5.3	LM	Mercer	20	5.7	LM	Williamson	188	7.2	LM
Hamilton	*	*	*	Monroe	25	8.6	HМ	Winnebago	668	5.2	LM
Hancock	7	19.0	Н	Montgomery	91	7.4	LM	Woodford	42	10.2	HM
Source: IDHES											

report data for counties with fewer than 5 cases. * Data not available.

Race and ethnicity data not available.

sional during the past 12 months (State Health Facts: Health Status-Children, KFF, 2

Clark

REACH LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

Footnote: Illinois's All Kids Program administers the state's Medicaid program, the Children's Health Insurance Program, and a state-funded health insurance program. Data are unavailable for some counties because, in accordance with HIPAA privacy standards, IDHFS does not

Fiscal Resources

Budgets reflect choices and priorities. To illustrate the choices the State has made for investing in families with young children age five and under, the Fiscal Scan analyzes publicly available data from the Governor's Office of Management and Budget and various state agencies (for details, see the Methodology-Fiscal Analysis section in the Introduction). Summaries entitled Fiscal Resources are included at the end of each domain section (Family Stability, Health, and Early Care and Education) and feature figures and tables that summarize the investments assigned to that domain.

Figure 22 illustrates that within the total Illinois Operating Budget for Fiscal Year 2018 (\$63.684 billion), a 4.9 percent share (\$3.127 billion) is spent on families with young children. This includes all funds appropriated by the State, from both federal and state sources of revenue.

FIGURE 22. Illinois State Operating Budget and Total Spending for Families with Young Children, FY2018 (in millions)¹¹⁹

In addition, Illinois benefits from \$754 million in federal funds that do not pass through state agencies but which the Risk and Reach Advisory Council determined were important to families with young children. These investments are the Supplemental Nutrition Assistance Program, SNAP, which goes directly to families with young children, and Head Start (including Early Head Start) funds that go directly to administering agencies. The addition of these federal funds bring the total amount of investment in families with young children to \$3.881 billion (as illustrated in Figure 23).

FIGURE 23. Total Spending for Families with Young Children from both State Operating Budget and Select Federal Programs, FY2018 (in millions)¹²⁰

Source: Risk and Reach analysis of Governor's Office of Management and Budget, Illinois Comptroller's Office, Illinois Department of Children and Family Services, Illinois Department of Healthcare and Family Services, Illinois Department of Human Services, Illinois Department of Public Health, Illinois Head Start Association, Illinois State Board of Education, and U.S. Department of Agriculture data.

When analyzing the \$3.881 billion by domain of child well-being (Family Stability, Health and Early Care and Education), Figure 24 summarizes the total investment per domain combining three sources (state, federal appropriated by the State, and federal SNAP/Head Start/Early Head Start). Family Stability investments total \$535 million, Health investments comprise the largest share with \$1.771 billion, and Early Care and Education investments total \$1.576 billion.

FIGURE 24. Resources for Families with Young Children by Domain of Child Well-Being, FY2018 (in millions)¹²¹

\$1,771, 46%

An assessment of health must consider child and maternal health and both physical and mental well-being. Illinois makes a variety of investments in child and maternal nutrition and health as well as public health.

The programs detailed in the Health Domain are delivered through the Illinois Department of Healthcare and Family Services (IDHFS), Illinois Department of Human Services (IDHS), Illinois Department of Public Health (IDPH), and Illinois State Board of Education (ISBE). Figure 35 illustrates the three categories of expenditures in the Health Domain: Nutrition, Healthcare and Family Services, and Maternal and Child Health.

IDHFS administers the state's Medicaid program, the Children's Health Insurance Program (All Kids), and other state-funded medical assistance programs providing access to preventive and specialized health care. IDHS operates nutrition and health programs targeted at mothers and children. IDPH provides services to children through Maternal and Child Health Services, Infant and Perinatal Services, and Screening and Immunization Programs. ISBE operates nutrition programs targeted at young children.

FIGURE 35. Health Expenditures by Category, FY2018¹²²

FIGURE 36. Nutrition Expenditures by Program, FY

Figure 37 shows the two programs that comprise Healthcare and Family Services Expenditures for families with young children:

Moms & Babies covers healthcare for women while they are pregnant and for 60 days after the baby is born. Moms & Babies covers both outpatient healthcare and inpatient hospital care, including delivery.

All Kids provides children with comprehensive, affordable, health insurance. Illinois children age 18 and under can get All Kids health insurance if they meet the insurance and family income requirements. The program serves children regardless of immigration status or health condition.

FIGURE 37. Healthcare and Family Services Expenditures by Program, FY2018¹²⁴

Within the Nutrition expenditures illustrated in Figure 36, the two primary programs include:

Special Supplemental Nutrition Program for Women, Infants and Children (WIC), a program that serves pregnant and nursing women and children from birth through age four who have limited economic resources. WIC provides a monthly supplemental food package of nutritious foods, health care referrals, nutrition education, and breastfeeding promotion.

The Child and Adult Care Food Program (CACFP) provides reimbursements for the provision of nutritious meals and snacks that contribute to the wellness, healthy growth, and development of young children. CACFP operates in child care institutions, family and group day care homes, preschool programs, and before and after school programs.

′2018 ¹²³	
, 2	
	Women, Infants, and Children (WIC)
	Child and Adult Care Food Program (CACFP)
	Source: Risk and Reach analysis of Governor's Office of Management and Budget and Illinois State Board of Education data.

81.2%

Figure 38 shows detail of expenditures from All Kids totaling \$1,069 billion and representing one-third of the total spent on families with young children in Illinois. All Kids covers a variety of expenditures including: doctor visits, regular check-ups, and immunizations, hospital stays, prescription drugs, vision care, dental care, and eyeglasses as well as special services like medical equipment, speech therapy, and physical therapy, mental health services for children who need them. Mental health services total \$29.48 million or less than one percent of the total spent on young children.

FIGURE 38. All Kids Expenditures by Program Area, FY2018

FIGURE 39. Maternal and Child Health Expenditures by Program, FY2018¹²⁵

Source: Risk and Reach analysis of Governor's Office of Management and Budget and Illinois Department of Public Health data.

TABLE 30. Health Expenditures, FY2018 (in millions)

Category/Program	FY18 Actual Expenditures	Funding Source	Implementing Agency
Nutrition ¹²⁶			
Women, Infants, Children (WIC)	\$236.63	Federal	IDHS
Child and Adult Care Food Program (CACFP)	\$145.10	Federal	ISBE
Nutrition Subtotal	\$381.73		
Healthcare and Family Services ¹²⁷			
All Kids ¹²⁸	\$1,069.10	State and Federal	IDHFS
Moms & Babies	\$247.60	State and Federal	IDHFS
Healthcare and Family Services Subtotal	\$1,316.70		
Maternal and Child Health			
IDHS Maternal and Child Health	\$2.30	Federal	IDHS
IDPH Maternal and Child Health	\$15.47	Federal	IDPH
IDHS Infant Mortality	\$27.00	State	IDHS
IDPH Infant Mortality	\$1.20	State	IDPH
Screenings	\$14.81	State	IDPH
Immunizations	\$4.48	State	IDPH
Lead Programs	\$6.88	State	IDPH
Maternal and Child Health Subtotal	\$72.14		
HEALTH TOTAL	\$1,770.57		

Source: Governor's Office of Management and Budget, Illinois Department of Healthcare and Family Services, Illinois Department of Public Health, and Illinois State Board of Education.

Participation in high-quality early learning experiences can have a positive impact on children's nearterm development by improving their readiness for school.

Early Care and Education

Early childhood is a critical period for brain development.Finally, to identify the public dollars available to support early
care and education, we measured state and federal investmentsDevelopment at this stage lays the foundation for future
physical, cognitive, social, and emotional outcomes, thus access
to quality education and development programming in the
early years can have important and lasting positive impacts.Finally, to identify the public dollars available to support early
care and education, we measured state and federal investments
in six program areas: home visiting, early intervention, early
childhood special education, Child Care Assistance Program,
Head Start/Early Head Start/Migrant Head Start, and Early
Childhood Block Grant and Preschool Expansion.

Research finds that participation in high-quality early learning experiences can have a positive impact on children's near-term development by improving their readiness for school.¹²⁹ Over the long term, children experience increased likelihood of employment and decreased likelihood of drug use and incarceration.¹³⁰

Use of high-quality care and other support services is especially important for children experiencing multiple risk factors because of the early disparity between their typical developmental outcomes and academic achievement and those of their peers who do not experience multiple risk factors.¹³¹

To evaluate Risk in this domain, we chose three indicators measuring children's performance on standardized assessments: kindergarten readiness and third grade language arts and math proficiency. These Early Care and Education Risk Indicators evaluate how prepared children are for school entry and beyond.

To explore how well we are meeting children's development and learning needs, we examined seven Early Care and Education Reach Indicators related to the availability and accessibility of early care and development programs: home visiting, developmental screening, Early Intervention, early childhood special education, high-quality child care, Prevention Initiative, and publicly funded preschool.

KEY FINDINGS

Thirty-two of Illinois's 102 counties (31.4 percent) ranked in the High Risk category on at least one of the three Early Care and Education Risk Indicators. Thirteen counties (12.7 percent) were in the High Risk group on two of the three Early Care and Education Risk indicators.

Fifty-three of Illinois's 102 counties (52.0 percent) are considered High Reach on at least one of the seven Early Care and Education Reach Indicators, with 14 counties (13.7 percent) scoring in the High Reach category on at least two of the seven indicators.

As in other domains, investments in Early Care and Education represent a state-federal partnership. Investments in home visiting programs, which are often targeted at our youngest and most vulnerable children, lag behind investments in child care and early education.

RISK: KINDERGARTEN READINESS

School readiness is a term used to define children's physical, social-emotional, cognitive, and language development.¹³² Children who start kindergarten demonstrating the skills and abilities necessary for school are more likely to stay on track with their classmates throughout their educational careers and experience greater long-term success in school than those who do not demonstrate readiness at school entry.¹³³

Illinois is one of about 30 states that requires kindergarten entry assessments to better understand what children know upon starting school. The Kindergarten Individual Development Survey (KIDS) was implemented statewide in the 2017-2018 school year after several pilot years.¹³⁴ By observing and evaluating each child's strengths and areas for growth, educators can provide a responsive learning environment and help families support school success.

Map 25 shows that 76.1 percent of Illinois kindergarteners did not demonstrate readiness in three of the domains tested in School Year 2017-2018.135 County averages ranged from a low of 48.6 percent in Calhoun County to a high of 100.0 percent of kindergarteners without demonstrated readiness in Putnam County. Fourteen counties fell into the High Risk category.

TABLE 31. Number and percent of kindergarten students without demonstrated readiness, School Year 2017-2018

RISK LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

County	#	%		County	#	%		County	#	%	
Adams	291	52.2	L	Hardin	27	84.4	Н	Morgan	215	72.6	LM
Alexander	54	66.7	LM	Henderson	19	51.4	L	Moultrie	92	74.2	HM
Bond	86	57.0	L	Henry	440	81.9	НМ	Ogle	383	79.0	НМ
Boone	352	86.9	Н	Iroquois	192	74.4	HM	Peoria	1,455	77.8	HM
Brown	30	58.8	L	Jackson	269	72.5	LM	Perry	115	64.2	LM
Bureau	214	81.1	ΗМ	Jasper	56	74.7	HM	Piatt	73	55.7	L
Calhoun	18	48.6	L	Jefferson	264	69.3	LM	Pike	92	69.2	LM
Carroll	103	78.0	ΗМ	Jersey	84	90.3	Н	Роре	33	80.5	ΗM
Cass	118	75.6	ΗМ	Jo Daviess	188	87.0	Н	Pulaski	36	81.8	ΗM
Champaign	1,240	76.4	ΗМ	Johnson	60	58.8	L	Putnam	1	100.0	Н
Christian	203	70.7	LM	Kane	5,473	82.3	HM	Randolph	175	68.6	LM
Clark	189	95.9	Н	Kankakee	761	76.9	HM	Richland	91	61.9	L
Clay	126	86.3	Н	Kendall	1,209	79.6	HM	Rock Island	976	82.3	ΗM
Clinton	191	62.0	L	Knox	345	76.0	HM	St. Clair	1,727	75.1	HM
Coles	218	56.0	L	Lake	5,870	78.2	HM	Saline	224	74.9	ΗM
Cook	27,771	77.0	ΗМ	LaSalle	742	79.4	НМ	Sangamon	1,290	78.3	ΗM
Crawford	127	87.6	Н	Lawrence	130	86.7	Н	Schuyler	55	85.9	Н
Cumberland	85	78.7	ΗМ	Lee	249	89.9	Н	Scott	44	80.0	НМ
DeKalb	766	75.0	НМ	Livingston	194	59.9	L	Shelby	115	62.5	L
DeWitt	119	70.4	LM	Logan	101	63.1	L	Stark	33	66.0	LM
Douglas	133	68.2	LM	McDonough	121	73.8	LM	Stephenson	309	88.3	Н
DuPage	5,295	70.0	LM	McHenry	2,071	76.5	ΗM	Tazewell	964	78.8	ΗM
Edgar	110	63.2	L	McLean	1,065	70.9	LM	Union	117	66.5	LM
Edwards	52	72.2	LM	Macon	783	80.6	ΗM	Vermilion	628	79.2	ΗM
Effingham	232	70.9	LM	Macoupin	357	71.1	LM	Wabash	103	82.4	ΗM
Fayette	128	74.4	HM	Madison	1,540	69.7	LM	Warren	103	65.2	LM
Ford	92	73.0	LM	Marion	325	68.6	LM	Washington	94	84.7	Н
Franklin	233	75.6	HM	Marshall	31	51.7	L	Wayne	117	71.8	LM
Fulton	241	87.6	Н	Mason	111	81.6	ΗM	White	114	78.6	ΗM
Gallatin	39	81.3	ΗM	Massac	93	69.9	LM	Whiteside	281	65.0	LM
Greene	91	83.5	HM	Menard	119	74.8	ΗM	Will	5,062	82.8	HM
Grundy	544	77.2	ΗМ	Mercer	64	82.1	ΗM	Williamson	437	67.1	LM
Hamilton	47	68.1	LM	Monroe	116	76.3	ΗM	Winnebago	1,729	77.8	HM
Hancock	125	67.6	LM	Montgomery	151	55.9	L	Woodford	330	68.2	LM

Source: ISBE

Footnote: Data include kindergarten students without demonstrated readiness in three of the Kindergarten Individual Development Survey (KIDS) development areas: social and emotional development, language and literacy development, and cognition/math.

Source: ISBE, SY2017-2018.

RISK: KINDERGARTEN READINESS

MAP 25. Percent of kindergarten students without demonstrated readiness, School Year 2017-2018

Individual Development Survey (KIDS) development areas: social and emotional development, language and literacy development, and cognition/math. National average data are not available because KIDS is not red outside of Illinois

RISK: THIRD GRADE **PROFICIENCY** -LANGUAGE ARTS

Illinois school children participate in annual summative assessments beginning in third grade and administered annually through the eighth grade. For the 2016-2017 school year, Illinois used the Partnership for Assessment of Readiness for College and Careers (PARCC) as its assessment tool and accountability measure for students enrolled in public school districts. Schools and educators use results from PARCC assessments for student promotion and to inform instruction while parents use the information to understand their child's academic progress.

PARCC evaluates students' mastery of educational material in English Language Arts.¹³⁶ Map 26 shows that 63.8 percent of Illinois third grade students did not meet expectations in English language arts in School Year 2016-2017. County averages ranged from a low of 39.1 percent in Monroe County to a high of 93.2 percent of third graders not meeting expectations in English in Hardin County. Fourteen counties fell into the High Risk category.

TABLE 32. Number and percent of 3rd grade students not meeting expectations
in English language arts, School Year 2016-2017

RISK LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

County	#	%		County	#	%		County	#	%	
Adams	457	71.3	ΗМ	Hardin	41	93.2	н	Morgan	220	61.8	LM
Alexander	58	90.6	Н	Henderson	46	74.2	НМ	Moultrie	66	58.4	LM
Bond	90	63.4	LM	Henry	423	71.3	HМ	Ogle	391	65.9	НM
Boone	529	77.1	Н	Iroquois	169	57.1	LM	Peoria	1,429	66.9	НM
Brown	34	72.3	ΗМ	Jackson	430	79.5	н	Perry	119	68.8	ΗМ
Bureau	209	64.7	LM	Jasper	45	50.6	L	Piatt	63	39.6	L
Calhoun	15	48.4	L	Jefferson	305	70.6	HМ	Pike	160	80.4	Н
Carroll	89	55.3	L	Jersey	69	42.1	L	Pope	30	90.9	Н
Cass	141	82.0	Н	Jo Daviess	134	63.2	LM	Pulaski	49	84.5	Н
Champaign	1,318	68.2	ΗM	Johnson	100	78.1	Н	Putnam	34	63.0	LM
Christian	232	70.9	ΗM	Kane	6,128	70.7	HМ	Randolph	187	63.4	LM
Clark	106	57.3	LM	Kankakee	909	69.7	НМ	Richland	138	81.7	Н
Clay	108	64.3	LM	Kendall	945	46.8	L	Rock Island	1,318	75.4	ΗМ
Clinton	173	44.7	L	Knox	330	65.9	ΗM	St. Clair	2,070	67.5	ΗM
Coles	346	67.6	ΗМ	Lake	5,569	58.3	LM	Saline	214	77.3	Н
Cook	36,607	64.8	LM	LaSalle	724	66.2	ΗM	Sangamon	1,467	66.9	НМ
Crawford	120	66.7	НM	Lawrence	109	65.7	LM	Schuyler	55	68.8	ΗM
Cumberland	75	66.4	ΗМ	Lee	233	72.6	ΗM	Scott	37	68.5	HM
DeKalb	781	66.8	ΗМ	Livingston	287	65.5	LM	Shelby	123	59.1	LM
DeWitt	104	54.2	L	Logan	174	70.7	ΗM	Stark	47	69.1	НM
Douglas	192	72.2	НM	McDonough	173	76.2	Н	Stephenson	315	65.5	LM
DuPage	5,526	51.0	L	McHenry	1,957	57.9	LM	Tazewell	885	58.3	LM
Edgar	151	70.6	ΗМ	McLean	1,126	60.5	LM	Union	142	68.9	ΗМ
Edwards	38	44.7	L	Macon	892	73.7	НМ	Vermilion	728	75.6	ΗМ
Effingham	179	52.2	L	Macoupin	396	64.6	LM	Wabash	74	71.8	ΗМ
Fayette	132	66.3	НМ	Madison	1,818	63.4	LM	Warren	133	70.7	HM
Ford	101	64.7	LM	Marion	314	63.3	LM	Washington	73	60.8	LM
Franklin	308	68.9	ΗM	Marshall	54	57.4	LM	Wayne	96	51.3	L
Fulton	254	74.9	ΗM	Mason	103	63.6	LM	White	126	65.6	LM
Gallatin	36	85.7	Н	Massac	121	64.0	LM	Whiteside	416	62.8	LM
Greene	92	67.2	ΗM	Menard	99	62.7	LM	Will	5,044	62.3	LM
Grundy	590	60.5	LM	Mercer	75	74.3	ΗM	Williamson	488	61.2	LM
Hamilton	39	50.0	L	Monroe	137	39.1	L	Winnebago	2,540	76.2	Н
Hancock	125	60.4	LM	Montgomery	204	66.4	HM	Woodford	269	50.6	L

Source: ISBE, Illinois Report Card

Footnote: Student performance measured using the Partnership for Assessment of Readiness for College and Careers (PARCC).

Source: ISBE, SY2016-2017.

RISK: THIRD GRADE PROFICIENCY - LANGUAGE ARTS

MAP 26. Percent of 3rd grade students not meeting expectations in English language arts, School Year 2016-2017

Footnote: Student performance measured using the Partnership for Assessment of Readiness for College and Careers (PARCC). National average data are not a true national average because PARCC data only available for CO, DC, IL, MD, NJ, NM, and RI. National average data are for SY2015-2016. State and county level data are for SY2016-2017

RISK: THIRD GRADE **PROFICIENCY** -MATH

Illinois school children participate in annual summative assessments beginning in third grade and administered annually through the eighth grade. For the 2016-2017 school year, Illinois used the Partnership for Assessment of Readiness for College and Careers (PARCC) as its assessment tool and accountability measure for students enrolled in public school districts. Schools and educators use results from PARCC assessments for student promotion and to inform instruction while parents use the information to understand their child's academic progress.

PARCC evaluates students' mastery of educational material in mathematics.¹³⁷ Map 27 shows that 60.8 percent of Illinois third grade students did not meet expectations in math in School Year 2016-2017. County averages ranged from a low of 25.9 percent in Monroe County to a high of 83.9 percent of third graders not meeting expectations in math in Henderson and Pulaski counties. Seventeen counties fell into the High Risk category.

TABLE 33. Number and percent of 3rd grade students not meeting expectations in mathematics, School Year 2016-2017

RISK LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

County	#	%		County	#	%		County	#	%	
Adams	428	67.0	ΗМ	Hardin	27	62.8	НМ	Morgan	235	66.0	HM
Alexander	52	82.5	Н	Henderson	52	83.9	Н	Moultrie	62	54.9	LM
Bond	82	57.7	LM	Henry	377	63.6	ΗМ	Ogle	327	55.1	LM
Boone	501	73.1	ΗМ	Iroquois	179	60.5	LM	Peoria	1,378	64.5	НМ
Brown	37	78.7	Н	Jackson	403	74.2	Н	Perry	126	72.8	НМ
Bureau	187	57.9	LM	Jasper	39	43.8	L	Piatt	81	50.9	L
Calhoun	18	58.1	LM	Jefferson	319	73.8	Н	Pike	161	80.9	Н
Carroll	67	41.6	L	Jersey	56	34.1	L	Роре	25	75.8	Н
Cass	144	83.2	Н	Jo Daviess	123	57.7	LM	Pulaski	47	83.9	Н
Champaign	1,236	63.1	ΗМ	Johnson	95	74.2	Н	Putnam	31	57.4	LM
Christian	207	63.3	ΗМ	Kane	5,537	63.8	НM	Randolph	182	61.5	LM
Clark	110	59.5	LM	Kankakee	855	65.6	HM	Richland	128	75.7	Н
Clay	103	61.3	LM	Kendall	1,040	51.6	LM	Rock Island	1,227	70.0	ΗM
Clinton	168	43.4	L	Knox	342	67.5	HM	St. Clair	1,958	63.9	НМ
Coles	357	70.1	ΗМ	Lake	5,203	54.3	LM	Saline	219	78.8	Н
Cook	36,081	63.5	ΗМ	LaSalle	786	71.7	НМ	Sangamon	1,334	60.9	LM
Crawford	112	62.2	LM	Lawrence	108	65.1	ΗМ	Schuyler	53	66.3	НМ
Cumberland	69	61.1	LM	Lee	239	74.5	Н	Scott	29	53.7	LM
DeKalb	715	61.3	LM	Livingston	264	60.3	LM	Shelby	110	52.9	LM
DeWitt	115	59.9	LM	Logan	158	64.2	НМ	Stark	41	60.3	LM
Douglas	193	72.6	ΗМ	McDonough	162	71.7	ΗМ	Stephenson	283	58.8	LM
DuPage	4,806	44.3	L	McHenry	1,824	53.9	LM	Tazewell	794	52.3	LM
Edgar	161	74.9	Н	McLean	1,077	57.8	LM	Union	125	60.7	LM
Edwards	32	37.6	L	Macon	885	72.8	НМ	Vermilion	693	72.0	ΗM
Effingham	183	53.2	LM	Macoupin	400	65.3	НМ	Wabash	56	53.8	LM
Fayette	115	57.8	LM	Madison	1,753	61.0	LM	Warren	139	73.5	Н
Ford	98	62.8	ΗМ	Marion	315	63.6	НM	Washington	78	66.1	НМ
Franklin	329	73.6	Н	Marshall	50	53.2	LM	Wayne	92	49.2	L
Fulton	257	75.8	Н	Mason	102	63.0	НМ	White	111	57.8	LM
Gallatin	28	66.7	ΗМ	Massac	70	37.0	L	Whiteside	432	65.1	HM
Greene	94	68.6	ΗМ	Menard	98	62.0	LM	Will	4,582	56.6	LM
Grundy	580	59.5	LM	Mercer	71	70.3	НМ	Williamson	421	52.8	LM
Hamilton	33	42.3	L	Monroe	90	25.9	L	Winnebago	2,432	72.9	ΗM
Hancock	126	60.9	LM	Montgomery	189	61.8	LM	Woodford	256	48.1	L

Source: ISBE, Illinois Report Card

Footnote: Student performance measured using the Partnership for Assessment of Readiness for College and Careers (PARCC).

Source: ISBE, SY2016-2017.

RISK: THIRD GRADE PROFICIENCY - MATH

MAP 27. Percent of 3rd grade students not meeting expectations in mathematics, School Year 2016-2017

Footnote: Student performance measured using the Partnership for Assessment of Readiness for College and Careers (PARCC). National average data are not a true national average because PARCC data only available for CO, DC, IL, MD, NJ, NM, and RI. National average data are for SY2015-2016. State and county level data are for SY2016-2017

0

Clay

Brown

5.6%

Jo Daviess

REACH: HOME VISITING

MAP 28. Percent of program-eligible children age 5 and under enrolled in a home visiting program, FY2016

REACH: HOME VISITING

Home visiting programs support healthy parent-child relationships as well as child growth and development. There are several home visiting programs in Illinois, each with slightly different program models, target populations, and funding sources.

w/ill

 \bigcirc

 \bigcirc

Iroquois

()

Clark

Broadly speaking, home visiting programs work with families with young children who are experiencing one or more risk factors, including poverty, history of substance use disorder or violence, risk for child maltreatment, firsttime or adolescent parents, or children with disabilities. Programs may serve families from pregnancy to kindergarten, depending on the program. The content of programs varies, but most strengthen the parent-child relationship, model positive parenting skills, encourage economic self-sufficiency, support child development, promote learning and school readiness, and/or provide early detection for developmental delays and health issues.138

Map 28 shows that 5.6 percent of Illinois children age five and under living in households below 185 percent of poverty received services through one of five home visiting programs in 2016.¹³⁹ County averages ranged from a low of 0.0 percent in 17 counties to a high of 38.6 percent in Hamilton County.

TABLE 34. Number and percent of program-eligible children age 5 and under enrolled in a home visiting program, FY2016

County	#	%		County	#	%		County	#	%	
Adams	129	6.1	ΗМ	Hardin	1	1.5	LM	Morgan	118	13.8	Н
Alexander	55	10.1	ΗМ	Henderson	12	7.4	ΗМ	Moultrie	18	2.6	LM
Bond	67	12.7	Н	Henry	76	6.9	НМ	Ogle	1	0.1	LM
Boone	8	0.6	LM	Iroquois	34	3.6	LM	Peoria	341	4.9	LM
Brown	29	19.9	Н	Jackson	174	9.7	ΗМ	Perry	33	6.0	ΗМ
Bureau	15	1.7	LM	Jasper	0	0.0	L	Piatt	6	2.3	LM
Calhoun	0	0.0	L	Jefferson	83	5.7	НМ	Pike	18	3.2	LM
Carroll	32	9.6	НМ	Jersey	32	6.6	НМ	Pope	0	0.0	L
Cass	46	8.7	НМ	Jo Daviess	56	18.9	Н	Pulaski	0	0.0	L
Champaign	256	4.6	LM	Johnson	0	0.0	L	Putnam	1	0.9	LM
Christian	48	6.2	ΗМ	Kane	649	4.3	LM	Randolph	20	2.8	LM
Clark	0	0.0	L	Kankakee	138	3.9	LM	Richland	92	21.0	Н
Clay	137	26.4	Н	Kendall	4	0.2	LM	Rock Island	186	3.4	LM
Clinton	24	3.3	LM	Knox	43	2.5	LM	Saline	60	6.5	HM
Coles	0	0.0	L	Lake	495	3.1	LM	Sangamon	205	3.6	LM
Cook	10,659	6.2	НМ	LaSalle	28	0.8	LM	Schuyler	0	0.0	L
Crawford	27	6.3	НМ	Lawrence	0	0.0	L	Scott	12	7.7	ΗM
Cumberland	12	3.4	LM	Lee	55	6.8	НМ	Shelby	0	0.0	L
DeKalb	85	3.0	LM	Livingston	62	6.8	ΗМ	St. Clair	404	4.1	LM
DeWitt	5	1.2	LM	Logan	33	4.8	LM	Stark	0	0.0	L
Douglas	2	0.2	LM	Macon	453	10.5	НМ	Stephenson	193	10.5	ΗM
DuPage	654	4.4	LM	Macoupin	85	6.3	НМ	Tazewell	103	3.7	LM
Edgar	44	5.5	ΗМ	Madison	385	5.4	ΗМ	Union	0	0.0	L
Edwards	24	14.9	Н	Marion	95	5.6	НМ	Vermilion	307	8.0	HM
Effingham	1	0.1	LM	Marshall	0	0.0	L	Wabash	22	7.1	ΗM
Fayette	71	9.7	НМ	Mason	28	6.1	НМ	Warren	0	0.0	L
Ford	13	3.0	LM	Massac	0	0.0	L	Washington	0	0.0	L
Franklin	53	3.5	LM	McDonough	80	10.1	НМ	Wayne	66	11.6	Н
Fulton	25	2.3	LM	McHenry	65	1.3	LM	White	25	5.9	HM
Gallatin	12	6.1	НМ	McLean	120	3.0	LM	Whiteside	144	7.1	HM
Greene	39	9.1	НМ	Menard	10	2.5	LM	Will	1,503	11.1	НМ
Grundy	14	1.1	LM	Mercer	12	2.8	LM	Williamson	37	1.9	LM
Hamilton	56	38.6	Н	Monroe	0	0.0	L	Winnebago	506	4.5	LM
Hancock	18	3.2	LM	Montgomery	47	5.2	LM	Woodford	33	3.9	LM

Source: ISBE, IDHS, GOECD MIECHV project, Head Start Collaboration Office, and ACS.

not be verified for some counties

Race and ethnicity data not available.

REACH LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

Footnote: Home visiting programs include Head Start home-based, Healthy Families Illinois, Parents Too Soon, Prevention Initiative (PI), and Maternal, Infant, and Early Childhood Home Visiting Program. Program-eligible defined as children living below 185 percent of poverty. Some but not all home visiting programs include a requirement that families have low income. Based on FY2019 data, approximately 79 percent of PI slots are center-based, not home-based, but both home- and center-based PI slots are included here because the program did not report data by program type in FY2016. Early Head Start also provides home visiting but data are not included because data could

REACH: DEVELOPMENTAL SCREENING

MAP 29. Number of children age 5 and under who received developmental screening and were reported through Child Find, FY2018

REACH LEVEL*

LOWEST REACH:

Many zip codes qualified for lowest reach. Please refer to Table 35 for details.

HIGHEST REACH:

STATE AVERAGE: Data not available

NATIONAL AVERAGE:

Data not available

REACH: DEVELOPMENTAL **SCREENING**

Most developmental differences are not cause for concern, but about one in 10 children needs special help.¹⁴⁰ Developmental screening provides the earliest possible identification of children who may benefit from Early Intervention and early childhood special education services.

Developmental screenings evaluate children's hearing, vision, physical coordination, speech, and cognitive development, as well as social and emotional skills. The screening process also refers families to specific resources to help them address potential concerns. Screenings ensure that children who are not meeting developmental milestones are identified at appropriate ages so that treatment plans can be considered and initiated as early as possible.¹⁴¹

Map 29 shows that a total of 57,141 children age five and under received and reported a developmental screening through Child Find¹⁴² in Fiscal Year 2018.¹⁴³ Data do not include children who received screenings outside of Child Find, for example through health providers outside of county health departments. Child Find developmental screening data are only available by zip code of the location where the screening took place. The number of children served in each zip code ranged from a low of 0 in four zip codes (60071, 61016, 61112, and 62982) to a high of 3,724 children in the 60602 zip code.

Zip Code	#		Zip Code	#		Zip Code	#		Zip Code	#	
60002	93	LM	60098	549	Н	60188	119	LM	60457	140	ΗМ
60004	91	LM	60099	186	HM	60190	11	LM	60458	81	LM
60005	8	LM	60101	184	НМ	60191	88	LM	60459	105	LM
60010	87	LM	60102	2	LM	60201	39	LM	60460	10	LM
60012	38	LM	60103	105	LM	60302	1401	Н	60462	156	ΗМ
60013	247	HM	60107	204	HM	60304	81	LM	60463	101	LM
60014	1298	Н	60108	52	LM	60401	39	LM	60471	137	HM
60015	45	LM	60109	90	LM	60402	112	LM	60473	15	LM
60018	12	LM	60110	746	Н	60404	71	LM	60477	71	LM
60026	14	LM	60115	647	Н	60408	50	LM	60481	58	LM
60030	63	LM	60119	29	LM	60409	73	LM	60491	49	LM
60031	47	LM	60120	667	Н	60410	31	LM	60501	38	LM
60033	141	НМ	60123	340	HM	60411	195	HM	60504	473	Н
60042	144	HM	60124	1	LM	60415	48	LM	60505	966	Н
60047	23	LM	60126	173	HM	60416	30	LM	60506	911	Н
60048	82	LM	60131	3	LM	60417	135	HM	60510	123	LM
60050	53	LM	60134	36	LM	60420	47	LM	60514	42	LM
60051	10	LM	60137	174	HM	60421	13	LM	60516	14	LM
60053	165	НМ	60139	187	ΗM	60423	41	LM	60517	124	LM
60056	131	HM	60142	237	HM	60426	9	LM	60518	54	LM
60062	47	LM	60145	8	LM	60431	33	LM	60527	38	LM
60070	58	LM	60146	30	LM	60433	109	LM	60531	26	LM
60071	0	L	60148	132	ΗM	60435	864	Н	60532	28	LM
60073	181	HM	60152	83	LM	60436	174	HM	60538	1	LM
60076	30	LM	60156	409	ΗM	60439	40	LM	60540	121	LM
60081	12	LM	60157	35	LM	60440	91	LM	60541	30	LM
60084	78	LM	60160	115	LM	60441	619	Н	60543	422	ΗM
60085	2,076	Н	60164	60	LM	60446	599	Н	60544	451	Н
60087	6	LM	60171	7	LM	60447	17	LM	60545	114	LM
60089	36	LM	60174	119	LM	60448	43	LM	60546	11	LM
60090	81	LM	60178	60	LM	60450	65	LM	60548	99	LM
60091	60	LM	60181	225	HM	60451	129	HM	60551	41	LM
60093	19	LM	60185	878	Н	60452	102	LM	60559	19	LM
60097	19	LM	60187	215	HM	60453	260	HM	60560	65	LM

Source: Child Find Project

Race and ethnicity data not available.

TABLE 35. Number of children age 5 and under who received developmental screening and were reported through Child Find, FY2018

REACH LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

Footnote: Data include number of children screened during event of cumulative monthly report. Child Find developmental screening data are only available by zip code of the location where the screening took place. FY2018 data were used because FY2016 data were missing for several zip codes. Data do not represent all children screened. Of the 96,344 children who received and reported a developmental screening through Child Find in FY2018, only 57,141 have zip code data for the screening location.

Zip Code	#		Zip Code	#		Zip Code	#		Zip Code	#	
60561	95	LM	61072	296	НМ	61427	3	LM	61817	29	LM
60565	131	HM	61073	315	HM	61431	9	LM	61820	84	LM
60586	10	LM	61074	23	LM	61438	3	LM	61821	115	LM
60602	3724	Н	61079	12	LM	61440	10	LM	61832	453	Н
60608	149	HM	61080	179	НМ	61443	98	LM	61846	31	LM
60612	88	LM	61081	208	HM	61450	30	LM	61853	15	LM
60623	492	Н	61088	64	LM	61455	148	HM	61866	47	LM
60624	145	HM	61101	158	HM	61470	1	LM	61883	21	LM
60639	16	LM	61102	170	НМ	61484	4	LM	61910	85	LM
60644	193	HM	61103	195	HM	61491	4	LM	61911	9	LM
60706	2	LM	61104	1745	Н	61520	158	НМ	61912	15	LM
60707	96	LM	61107	122	LM	61531	1	LM	61913	27	LM
60714	126	LM	61108	186	НМ	61540	14	LM	61914	66	LM
60804	626	Н	61109	324	НМ	61542	16	LM	61920	193	HM
60805	97	LM	61111	63	LM	61546	6	LM	61924	19	LM
60901	169	HM	61112	0	L	61548	69	LM	61932	2	LM
60914	25	LM	61114	10	LM	61550	30	LM	61933	31	LM
60915	175	HM	61115	260	HM	61554	25	LM	61937	25	LM
60921	26	LM	61201	9	LM	61563	4	LM	61938	227	HM
60929	21	LM	61238	9	LM	61564	11	LM	61943	9	LM
60938	46	LM	61244	8	LM	61568	9	LM	61944	8	LM
60940	26	LM	61275	4	LM	61603	88	LM	61951	10	LM
60942	26	LM	61282	1	LM	61604	20	LM	61953	96	LM
60950	80	LM	61301	171	HM	61605	602	Н	61956	48	LM
60954	29	LM	61319	11	LM	61607	209	НМ	61957	12	LM
60957	57	LM	61325	12	LM	61614	13	LM	62002	174	HM
60963	8	LM	61326	69	LM	61616	590	Н	62010	89	LM
60964	20	LM	61341	31	LM	61701	3	LM	62013	4	LM
60970	400	HM	61342	145	НМ	61704	148	НМ	62014	6	LM
61008	197	HM	61345	7	LM	61723	22	LM	62016	66	LM
61010	157	HM	61348	91	LM	61726	15	LM	62024	240	HM
61012	47	LM	61350	580	Н	61732	17	LM	62025	140	HM
61016	0	L	61354	233	НМ	61734	36	LM	62040	3704	Н
61021	175	HM	61356	137	HM	61738	78	LM	62044	38	LM
61024	26	LM	61360	120	LM	61740	27	LM	62047	34	LM
61025	9	LM	61362	16	LM	61741	35	LM	62082	6	LM
61030	32	LM	61364	321	НМ	61745	37	LM	62087	102	LM
61032	665	Н	61370	6	LM	61752	19	LM	62092	69	LM
61061	57	LM	61373	10	LM	61755	42	LM	62095	47	LM
61063	39	LM	61415	1	LM	61761	2	LM	62206	38	LM
61068	272	HM	61416	2	LM	61764	343	НМ	62215	9	LM
61071	109	LM	61422	65	LM	61802	189	HM	62220	219	HM

Source: Child Find Project

Footnote: Data include number of children screened during event of cumulative monthly report. Child Find developmental screening data are only available by zip code of the location where the screening took place. FY2018 data were used because FY2016 data were missing for several zip codes. Data do not represent all children screened. Of the 96,344 children who received and reported a developmental screening through Child Find in FY2018, only 57,141 have zip code data for the screening location.

Zip Code	#										
62221	121	LM	62420	84	LM	62814	8	LM	62902	25	LM
62223	145	HM	62422	51	LM	62817	6	LM	62903	84	LM
62230	86	LM	62424	86	LM	62819	4	LM	62907	1	LM
62233	43	LM	62433	26	LM	62821	77	LM	62912	1	LM
62234	219	HM	62439	16	LM	62822	33	LM	62916	34	LM
62236	51	LM	62441	30	LM	62823	1	LM	62917	32	LM
62246	28	LM	62442	5	LM	62830	31	LM	62918	99	LM
62257	20	LM	62447	8	LM	62832	33	LM	62921	2	LM
62266	1	LM	62463	48	LM	62835	105	LM	62924	60	LM
62269	111	LM	62467	110	LM	62836	12	LM	62930	88	LM
62272	3	LM	62468	3	LM	62837	373	НМ	62931	32	LM
62274	19	LM	62476	3	LM	62839	131	НМ	62932	24	LM
62277	16	LM	62522	230	HM	62842	2	LM	62933	17	LM
62286	38	LM	62537	26	LM	62844	20	LM	62935	24	LM
62288	18	LM	62539	30	LM	62849	7	LM	62938	17	LM
62293	4	LM	62561	5	LM	62850	33	LM	62939	5	LM
62294	205	HM	62565	159	HM	62854	22	LM	62946	656	Н
62298	45	LM	62568	15	LM	62859	308	HM	62948	26	LM
62316	1	LM	62611	15	LM	62863	381	HM	62951	7	LM
62321	21	LM	62618	157	НМ	62864	154	НМ	62954	15	LM
62326	13	LM	62621	6	LM	62869	56	LM	62959	371	HM
62330	5	LM	62626	17	LM	62870	4	LM	62964	1	LM
62340	19	LM	62631	14	LM	62871	1	LM	62966	76	LM
62341	14	LM	62638	14	LM	62872	24	LM	62967	3	LM
62345	93	LM	62642	16	LM	62875	2	LM	62974	1	LM
62353	85	LM	62644	49	LM	62881	15	LM	62982	0	L
62354	5	LM	62650	470	Н	62882	6	LM	62983	3	LM
62358	11	LM	62665	9	LM	62884	32	LM	62984	70	LM
62363	115	LM	62674	24	LM	62888	2	LM	62997	1	LM
62366	8	LM	62677	4	LM	62889	42	LM	62998	8	LM
62367	3	LM	62681	56	LM	62890	32	LM	62999	20	LM
62373	2	LM	62692	51	LM	62893	1	LM			
62401	293	HM	62694	44	LM	62895	31	LM			
62410	14	LM	62801	7	LM	62896	98	LM			
62411	94	LM	62806	158	HM	62898	42	LM			
62414	29	LM	62812	44	LM	62901	604	Н			

Source: Child Find Project

Footnote: Data include number of children screened during event of cumulative monthly report. Child Find developmental screening data are only available by zip code of the location where the screening took place. FY2018 data were used because FY2016 data were missing for several zip codes. Data do not represent all children screened. Of the 96,344 children who received and report-ed a developmental screening through Child Find in FY2018, only 57,141 have zip code data for the screening location.

REACH: EARLY INTERVENTION

MAP 30. Percent of children age 2 and under receiving Early Intervention services, FY2016

OVERALL RISK LEVEL

REACH LEVEL*

- 1.56% 2.89%
- 2.90% 4.24%
- 4.25% 5.58%

5.59% - 7.50%

LOWEST REACH:

Monroe Clark Jo Daviess

HIGHEST REACH:

Coles Marion

STATE AVERAGE:

4.5%

NATIONAL AVERAGE: 3.1%

Footnote: Receipt of Early Intervention services defined as children with an active Individualized Family Service Plan implemented in accordance with Part C of the Individuals with Disabilities Educatic Act. Data are unavailable for some counties because IDHS does not report data for areas in which fewer than 10 children received services. Data presented here reflect the family's county of residence.

REACH: EARLY INTERVENTION

Early Intervention (EI) ensures that children from birth to age three with developmental delays, diagnosed disabilities, or medical conditions with a substantial risk of significant delays have the best chance for healthy development. Authorized by Part C of the federal Individuals with Disabilities Education Act (IDEA), El's mission is to assure that families receive resources and supports that assist them in maximizing their child's development. Families receive free comprehensive evaluations to determine eligibility as well as service coordination for those who are determined to be eligible for services.

El provides a range of developmental and socialemotional services in the child's natural environment, including speech language, developmental therapy, occupational and physical therapies, and social work services. Families also receive the coaching and support they need to further the gains their children make in therapy.

Map 30 shows that 4.5 percent of Illinois children age two and under received El services in Fiscal Year 2016.¹⁴⁴ County averages ranged from a low of 1.6 percent in Randolph County to a high of 7.5 percent in Saline County.

TABLE 36. Number and percent of children age 2 and under receiving Early Intervention services, FY2016

Adams

Bond

Boone

Brown

Bureau

Alexander

County

#

95

11

21

43

89

Calhoun	*	*
Carroll	*	*
Cass	16	3
Champaign	227	3
Christian	46	5
Clark	15	2
Clay	24	5
Clinton	40	3
Coles	109	7
Cook	10,093	5
Crawford	34	5
Cumberland	21	4
DeKalb	184	5
DeWitt	13	2
Douglas	35	4
DuPage	1,293	4
Edgar	28	4
Edwards	13	4
Effingham	83	7
Fayette	29	4
Ford	*	*
Franklin	62	4
Fulton	29	2
Gallatin	10	6
Greene	24	5
Grundy	85	4
Hamilton	*	*
Hancock	*	*

* Data not available.

Source: IDHS and ACS

Source: IDHS & ACS, FY2016.

REACH LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

%		County	#	%		County	#	%	
3.7	LM	Hardin	*	*	*	Morgan	42	4.1	LM
3.6	LM	Henderson	*	*	*	Moultrie	31	5.4	HM
4.5	HM	Henry	35	2.3	L	Ogle	83	5.6	HM
4.4	HM	Iroquois	40	4.3	HM	Peoria	315	3.9	LM
*	*	Jackson	81	4.1	LM	Perry	18	3.2	LM
4.3	HM	Jasper	17	4.6	HM	Piatt	16	3.3	LM
*	*	Jefferson	48	3.3	LM	Pike	12	2.5	L
*	*	Jersey	35	7.1	Н	Pope	*	*	*
3.1	LM	Jo Daviess	13	2.3	L	Pulaski	*	*	*
3.3	LM	Johnson	14	3.6	LM	Putnam	*	*	*
5.0	ΗМ	Kane	835	4.2	LM	Randolph	17	1.6	L
2.3	L	Kankakee	132	3.3	LM	Richland	47	7.1	Н
5.9	Н	Kendall	195	3.7	LM	Rock Island	138	2.6	L
3.0	LM	Knox	34	2.1	L	Saline	62	7.5	Н
7.4	Н	Lake	790	3.4	LM	Sangamon	301	4.4	ΗМ
5.1	HM	LaSalle	113	3.2	LM	Schuyler	*	*	*
5.5	ΗM	Lawrence	20	3.8	LM	Scott	*	*	*
4.9	HM	Lee	43	4.2	HM	Shelby	36	5.3	HM
5.0	ΗM	Livingston	62	5.2	HM	St. Clair	283	2.9	L
2.6	L	Logan	47	6.0	Н	Stark	*	*	*
4.9	ΗM	Macon	190	4.7	HM	Stephenson	58	4.4	ΗM
4.0	LM	Macoupin	50	3.6	LM	Tazewell	228	4.6	HM
4.3	ΗМ	Madison	380	4.2	LM	Union	24	4.0	LM
4.4	HM	Marion	109	7.4	Н	Vermilion	108	3.4	LM
7.1	Н	Marshall	12	3.5	LM	Wabash	25	6.6	Н
4.4	НМ	Mason	16	4.2	LM	Warren	11	1.8	L
*	*	Massac	14	3.4	LM	Washington	27	6.1	Н
4.6	НМ	McDonough	24	2.7	L	Wayne	20	3.5	LM
2.6	L	McHenry	492	5.0	HM	White	25	5.3	HM
6.9	Н	McLean	272	4.3	HM	Whiteside	52	3.0	LM
5.5	НМ	Menard	12	2.7	L	Will	1,135	4.8	НМ
4.7	НМ	Mercer	12	3.1	LM	Williamson	102	4.3	HM
*	*	Monroe	21	2.2	L	Winnebago	467	4.3	HM
*	*	Montgomery	45	5.0	HM	Woodford	49	3.7	LM

Footnote: Receipt of Early Intervention services defined as children with an active Individualized Family Service Plan implemented in accordance with Part C of the Individuals with Disabilities Education Act. Data are unavailable for some counties because IDHS does not report data for areas in which fewer than 10 children received services. Data presented here reflect the family's county of residence

REACH: EARLY CHILDHOOD SPECIAL EDUCATION

MAP 31. Percent of children age 3 to 5 receiving Early Childhood Special Education services, FY2016

OVERALL RISK LEVEL LOW RISK LOW - MODERATE RISK HIGH - MODERATE RISK

REACH LEVEL*

- 6.67% 10.29%
- 10.30% -13.93%

13.94% - 22.90%

LOWEST REACH:

Cook

HIGHEST REACH:

Hardin Clark Cumberland Crawford

STATE AVERAGE:

NATIONAL AVERAGE: 6.2%

Footnote: Receipt of Early Childhood Special Education services defined as children served under Part B of the Individuals with Disabilities Education Act

REACH: EARLY CHILDHOOD **SPECIAL EDUCATION**

Early Childhood Special Education is administered under Part B of the federal Individuals with Disabilities Education Act (IDEA), ensuring services for children and youth between the ages of three and 21 who have developmental delays and other disabilities and who experience challenges in their learning and development.¹⁴⁵

If a child qualifies for special education services, the local public school district is responsible for providing interventions and supports for the child's developmental and academic progress as outlined in the child's Individual Education Plan (IEP).¹⁴⁶ Services include specialized instruction, physical therapy, occupational therapy, speech and language services, cognitive therapy, and psychological services as well as training for parents and service coordination to help families navigate the process. From age three until kindergarten, children are entitled to receive special education and related services in the least restrictive environment, with typically developing peers, and in a range of settings, including their home, community-based preschool or child care, or schoolbased program.

Map 31 shows that 7.8 percent of Illinois children age three to five received early childhood special education services in Fiscal Year 2016. County averages ranged from a low of 4.0 percent in Mercer County to a high of 22.9 percent in Hardin County.

TABLE 37. Number and percent of children age 3 to 5 receiving Early Childhood Special Education services, FY2016

County	#	%		County	#	%		County	#	%	
Adams	238	9.1	LM	Hardin	19	22.9	н	Morgan	109	10.3	HM
Alexander	13	4.2	L	Henderson	11	6.2	L	Moultrie	35	6.4	L
Bond	71	12.3	НМ	Henry	186	11.3	НМ	Ogle	194	10.7	HM
Boone	178	9.6	LM	Iroquois	73	7.8	LM	Peoria	726	10.4	HM
Brown	20	14.6	Н	Jackson	149	8.5	LM	Perry	57	7.3	LM
Bureau	105	9.0	LM	Jasper	43	11.1	НМ	Piatt	46	7.4	LM
Calhoun	16	10.3	НМ	Jefferson	122	8.9	LM	Pike	74	12.1	НМ
Carroll	46	11.0	HM	Jersey	67	8.8	LM	Pope	10	10.5	HM
Cass	42	6.6	L	JoDaviess	66	11.2	ΗМ	Pulaski	15	8.4	LM
Champaign	403	5.9	L	Johnson	23	7.1	LM	Putnam	16	12.2	HM
Christian	91	8.4	LM	Kane	2,346	10.2	LM	Randolph	105	13.8	НМ
Clark	98	21.4	Н	Kankakee	360	8.3	LM	Richland	61	12.5	HM
Clay	57	9.3	LM	Kendall	542	9.7	LM	RockIsland	446	8.3	LM
Clinton	171	14.5	Н	Knox	113	7.8	LM	Saline	97	12.1	HM
Coles	207	13.3	ΗМ	Lake	2,338	8.3	LM	Sangamon	882	11.8	НМ
Cook	11,579	5.8	L	LaSalle	401	10.2	LM	Schuyler	12	5.1	L
Crawford	83	17.6	Н	Lawrence	50	9.4	LM	Scott	14	7.6	LM
Cumberland	60	18.0	Н	Lee	86	7.2	LM	Shelby	57	7.3	LM
DeKalb	305	8.4	LM	Livingston	184	15.8	Н	St.Clair	796	7.5	LM
DeWitt	75	11.6	HM	Logan	60	7.1	LM	Stark	29	17.1	Н
Douglas	111	13.8	ΗМ	Macon	399	9.4	LM	Stephenson	84	4.8	L
DuPage	3,015	8.8	LM	Macoupin	198	12.8	НМ	Tazewell	512	9.8	LM
Edgar	98	14.6	Н	Madison	910	9.1	LM	Union	73	14.3	Н
Edwards	30	15.2	Н	Marion	230	14.8	Н	Vermilion	268	8.3	LM
Effingham	151	11.1	ΗМ	Marshall	28	6.1	L	Wabash	61	14.7	Н
Fayette	53	6.4	L	Mason	77	17.3	Н	Warren	45	7.6	LM
Ford	57	9.4	LM	Massac	36	6.4	L	Washington	65	12.9	НМ
Franklin	140	9.9	LM	McDonough	53	6.6	L	Wayne	64	10.7	HM
Fulton	111	9.4	LM	McHenry	1,023	9.3	LM	White	72	13.0	НМ
Gallatin	24	9.7	LM	McLean	607	9.3	LM	Whiteside	258	11.0	HM
Greene	34	8.0	LM	Menard	86	21.2	Н	Will	2,181	7.8	LM
Grundy	339	15.0	Н	Mercer	26	4.0	L	Williamson	215	10.0	LM
Hamilton	29	8.6	LM	Monroe	97	8.7	LM	Winnebago	884	7.8	LM
Hancock	41	6.0	L	Montgomery	101	11.3	НМ	Woodford	115	7.1	LM

Source: ISBE and ACS Education Act.

Source: ISBE & ACS, FY2016.

REACH LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

Footnote: Receipt of Early Childhood Special Education services defined as children served under Part B of the Individuals with Disabilities

REACH: HIGH-QUALITY CHILD CARE

MAP 32. Percent of children receiving child care subsidies who were in a Gold Circle of Quality program, FY2017

REACH LEVEL*

NO DATA

- 0.01% 9.29%
- 9.30% -24.76%

24.77% - 79.50%

LOWEST REACH:

Many counties qualified for lowest Table 38 for details

HIGHEST REACH:

Bureau Rock Island DuPage

STATE AVERAGE:

15.5%

NATIONAL AVERAGE:

Data not available

Foothote: Analysis limited to children receiving subsides through the Child Care Assistan Program (CCAP). Programs include both licensed child care centers and licensed family c homes. Henderson and Putnam counties did not have any children receiving CCAP in FY2 for Wayne County are not verified. Precise national comparison data do not exist.

REACH: HIGH-QUALITY CHILD CARE

Illinois uses a Quality Rating and Improvement System (QRIS) called ExceleRate to rate the quality of child care programs. ExceleRate provides indicators and measures for determining program quality. Programs are rated as Licensed, Bronze, Silver, or Gold based on their performance on a select set of indicators related to teaching and learning, family and community engagement, leadership and management, and qualifications and continuing education. ExceleRate defines high quality as programs rated at the Gold level.

Map 32 shows the availability of high-quality child care in subsidized child care programs across the state. The map shows that 15.5 percent of Illinois children receiving child care subsidies were enrolled in a Gold Circle of Quality program in Fiscal Year 2017. The map includes both licensed child care centers and licensed family child care homes. County averages ranged from a low of 0.0 percent in 58 counties to a high of 79.5 percent in Bureau County.¹⁴⁷

For a more detailed analysis of access to high-quality child care in Illinois, please visit IFF.org to explore IFF's Spring 2019 report, Access and Quality for Illinois Children: Illinois Early Childhood Education Needs Assessment.

TABLE 38. Number and percent of children receiving child care subsidies who were in a Gold Circle of Quality program, FY2017

County	#	%		County	#	%		County	#	%	
Adams	83	13.0	ΗМ	Hardin	0	0.0	L	Morgan	55	19.1	ΗМ
Alexander	0	0.0	L	Henderson	*	*	*	Moultrie	0	0.0	L
Bond	0	0.0	L	Henry	0	0.0	L	Ogle	45	15.0	HM
Boone	0	0.0	L	Iroquois	0	0.0	L	Peoria	850	36.6	Н
Brown	0	0.0	L	Jackson	40	7.0	LM	Perry	28	24.6	HM
Bureau	31	79.5	Н	Jasper	2	9.1	LM	Piatt	0	0.0	L
Calhoun	0	0.0	L	Jefferson	67	16.1	HM	Pike	0	0.0	L
Carroll	0	0.0	L	Jersey	0	0.0	L	Pope	0	0.0	L
Cass	0	0.0	L	Jo Daviess	0	0.0	L	Pulaski	0	0.0	L
Champaign	202	5.8	LM	Johnson	0	0.0	L	Putnam	*	*	*
Christian	0	0.0	L	Kane	1,395	45.1	Н	Randolph	0	0.0	L
Clark	0	0.0	L	Kankakee	88	7.1	LM	Richland	48	59.3	Н
Clay	0	0.0	L	Kendall	192	27.1	Н	Rock Island	671	46.4	Н
Clinton	0	0.0	L	Knox	0	0.0	L	Saline	34	10.3	HM
Coles	0	0.0	L	Lake	697	10.4	НМ	Sangamon	139	4.3	LM
Cook	10,676	14.0	HM	LaSalle	55	18.5	ΗМ	Schuyler	0	0.0	L
Crawford	15	23.1	НМ	Lawrence	0	0.0	L	Scott	0	0.0	L
Cumberland	0	0.0	L	Lee	60	23.4	HM	Shelby	0	0.0	L
DeKalb	329	35.5	Н	Livingston	0	0.0	L	St. Clair	523	11.2	HM
DeWitt	0	0.0	L	Logan	30	22.7	HM	Stark	0	0.0	L
Douglas	0	0.0	L	Macon	10	0.5	LM	Stephenson	147	22.7	HM
DuPage	1,900	45.6	Н	Macoupin	0	0.0	L	Tazewell	214	34.2	Н
Edgar	0	0.0	L	Madison	148	6.9	LM	Union	0	0.0	L
Edwards	0	0.0	L	Marion	0	0.0	L	Vermilion	0	0.0	L
Effingham	0	0.0	L	Marshall	0	0.0	L	Wabash	0	0.0	L
Fayette	0	0.0	L	Mason	0	0.0	L	Warren	0	0.0	L
Ford	0	0.0	L	Massac	0	0.0	L	Washington	0	0.0	L
Franklin	0	0.0	L	McDonough	18	12.7	HM	Wayne	*	*	*
Fulton	0	0.0	L	McHenry	531	33.7	Н	White	0	0.0	L
Gallatin	0	0.0	L	McLean	403	26.3	Н	Whiteside	15	3.8	LM
Greene	0	0.0	L	Menard	0	0.0	L	Will	1,000	20.7	HM
Grundy	101	50.2	Н	Mercer	0	0.0	L	Williamson	253	30.9	Н
Hamilton	1	3.1	LM	Monroe	35	23.3	ΗМ	Winnebago	283	5.8	LM
Hancock	0	0.0	L	Montgomery	19	15.7	ΗМ	Woodford	0	0.0	L

Source: IDHS and INCCRRA * Data not available

Race and ethnicity data not available.

REACH LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

Footnote: Analysis limited to children receiving subsides through the Child Care Assistance Program (CCAP). Programs include both licensed child care centers and licensed family child care homes. Henderson and Putnam counties did not have any children receiving CCAP in FY2017. Data for Wayne County are not verified.

REACH: PREVENTION INITIATIVE

MAP 33. Prevention Initiative capacity as a share of eligible children age 3 and under, FY2016

REACH: PREVENTION INITIATIVE

The Prevention Initiative provides grants to home-based and center-

based programs to expand access to programs that serve at-risk

infants and toddlers and use a

research-based program model.

program), and the federal Early

Approved models currently include

Healthy Families Illinois, Parents As

Teachers, Baby TALK (a local Illinois

Head Start program (center-based

and combination home- and center-

based options). Funding can also be

used to enhance existing services,

including doula, intensive mental health services, and other areas as

identified by program grantees.

must experience state-defined

To be eligible, infants and toddlers

risk factors that undermine future

school success. Established risk

factors include families: living

at or below 200 percent of the

that do not use English as the

completed high school.

federal poverty level or homeless;

primary language; or in which the

parents are teenagers or have not

Map 33 shows that 6.1 percent of

eligible Illinois children age three

Initiative services in 2016.148 County

averages ranged from a low of 0.0

percent in 37 counties to a high of

32.7 percent in Hamilton County.¹⁴⁹

and under received Prevention

children age 3 and under, FY2016

County	#	%		County	#	%		County	#	%	
Adams	68	5.2	НМ	Hardin	0	0.0	L	Morgan	115	19.8	Н
Alexander	55	15.7	Н	Henderson	12	10.0	НМ	Moultrie	18	3.7	LM
Bond	20	6.0	ΗМ	Henry	75	10.0	ΗМ	Ogle	0	0.0	L
Boone	0	0.0	L	Iroquois	0	0.0	L	Peoria	221	4.6	LM
Brown	16	15.1	н	Jackson	131	10.5	НМ	Perry	12	3.8	LM
Bureau	15	2.7	LM	Jasper	0	0.0	L	Piatt	0	0.0	L
Calhoun	0	0.0	L	Jefferson	46	4.7	LM	Pike	17	4.5	LM
Carroll	28	12.1	Н	Jersey	32	9.9	НМ	Pope	0	0.0	L
Cass	43	14.9	н	Jo Daviess	55	28.5	н	Pulaski	0	0.0	L
Champaign	150	4.0	LM	Johnson	0	0.0	L	Putnam	0	0.0	L
Christian	47	8.7	НМ	Kane	396	4.1	LM	Randolph	20	3.7	LM
Clark	0	0.0	L	Kankakee	137	6.0	HM	Richland	89	26.2	Н
Clay	75	25.9	н	Kendall	0	0.0	L	Rock Island	71	1.9	LM
Clinton	12	2.4	LM	Knox	42	3.5	LM	Saline	0	0.0	L
Coles	0	0.0	L	Lake	354	3.4	LM	Sangamon	153	4.2	LM
Cook	8,435	7.3	ΗM	LaSalle	24	1.1	LM	Schuyler	0	0.0	L
Crawford	27	8.3	НМ	Lawrence	0	0.0	L	Scott	0	0.0	L
Cumberland	0	0.0	L	Lee	50	9.7	ΗМ	Shelby	0	0.0	L
DeKalb	51	2.6	LM	Livingston	0	0.0	L	St. Clair	208	3.3	LM
DeWitt	0	0.0	L	Logan	30	6.0	ΗМ	Stark	0	0.0	L
Douglas	0	0.0	L	Macon	310	11.4	ΗМ	Stephenson	104	8.8	НМ
DuPage	388	4.0	LM	Macoupin	14	1.7	LM	Tazewell	90	5.1	НМ
Edgar	44	9.4	ΗМ	Madison	248	5.4	ΗМ	Union	0	0.0	L
Edwards	0	0.0	L	Marion	0	0.0	L	Vermilion	46	1.9	LM
Effingham	0	0.0	L	Marshall	0	0.0	L	Wabash	22	9.8	НМ
Fayette	21	4.5	LM	Mason	28	9.9	ΗМ	Warren	0	0.0	L
Ford	0	0.0	L	Massac	0	0.0	L	Washington	0	0.0	L
Franklin	48	4.8	LM	McDonough	70	13.5	Н	Wayne	30	7.5	ΗM
Fulton	25	3.7	LM	McHenry	36	1.1	LM	White	0	0.0	L
Gallatin	0	0.0	L	McLean	45	1.7	LM	Whiteside	100	8.1	HM
Greene	28	10.3	НМ	Menard	0	0.0	L	Will	1,402	16.5	Н
Grundy	14	1.9	LM	Mercer	12	4.8	LM	Williamson	30	2.1	LM
Hamilton	32	32.7	Н	Monroe	0	0.0	L	Winnebago	270	3.8	LM
Hancock	15	4.5	LM	Montgomery	46	7.9	HM	Woodford	28	5.3	HM

Source: ISBE and ACS

108 Illinois Risk and Reach Report | Spring 2019

TABLE 39. Prevention Initiative capacity and capacity as a share of eligible

REACH LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

Footnote: Eligibility is defined as children living below 185 percent of poverty. While there is not an income eligibility requirement for the Prevention Initiative, children must be at risk for school failure as defined by the state, and the state's definition of at risk includes poverty.

Spring 2019 | Illinois Risk and Reach Report 109

REACH: PUBLICLY FUNDED PRESCHOOL

MAP 34. Gap between publicly funded preschool capacity and number of eligible children age 3 to 5, FY2016

REACH LEVEL*

- 4.878 38.706
- 936 4.877

LOWEST REACH:

Cook	
Lake	
Will	
DuPage	
Kane	

HIGHEST REACH:

Crawford
Johnson
Union
Jo Daviess
Jasper

STATE GAP: 95,383

NATIONAL GAP:

Data not available

REACH: PUBLICLY **FUNDED** PRESCHOOL

Illinois provides publicly funded preschool to children from ages three to five through Preschool for All (PFA) and Preschool for All Expansion (PFAE), state funded programs, and the Head Start Program, a federally funded program. Eligible children are from families with limited economic resources, experiencing homelessness, or otherwise determined to face increased risk of not being prepared for kindergarten.

The availability of preschool programs is an important measure of how well the state is meeting the developmental needs of young children. In the near-term, participation in high-quality preschool helps children to be prepared when they enter kindergarten.¹⁵⁰ In the long-term, positive effects have been documented into adolescence and adulthood, helping children succeed academically, achieve economic stability as adults, and lead healthier lives.¹⁵¹

Map 32 shows the gap between publicly funded preschool capacity and the number of eligible children age three to five.¹⁵² Statewide, there is a need for an additional 95,383 slots in Illinois. Counties ranged from a shortfall of 38,706 slots in Cook County to an extra 163 slots in Crawford County.

TABLE 40. Publicly-funded preschool capacity and gap between capacity and number of eligible children age 3 to 5, Fiscal Year 2016

Adams635476414014016373748401401161161161Alexander1725401401604170 <th>County</th> <th>#</th> <th>Gap</th> <th></th> <th>County</th> <th>#</th> <th>Gap</th> <th></th> <th>County</th> <th>#</th> <th>Gap</th> <th></th>	County	#	Gap		County	#	Gap		County	#	Gap	
Alexander247343401401707140Moultrie120120130 <td>Adams</td> <td>613</td> <td>547</td> <td>НМ</td> <td>Hardin</td> <td>40</td> <td>-3</td> <td>Н</td> <td>Morgan</td> <td>418</td> <td>76</td> <td>HM</td>	Adams	613	547	НМ	Hardin	40	-3	Н	Morgan	418	76	HM
BondI7.0 <t< td=""><td>Alexander</td><td>247</td><td>34</td><td>HM</td><td>Henderson</td><td>79</td><td>7</td><td>HM</td><td>Moultrie</td><td>126</td><td>218</td><td>HM</td></t<>	Alexander	247	34	HM	Henderson	79	7	HM	Moultrie	126	218	HM
BooneIndSamHMInquoise244248HMPeriora1,331,325I,MBreau35-32HJackson740140HMPeriya26108HMBureau42856HMJaper17070HPiatron84101HMCalhoun2042HMJaper7108HMPiatron84102HMCarroll1781401401681707108HMPiatron7208HMPiatron720	Bond	172	129	ΗМ	Henry	480	137	ΗМ	Ogle	253	555	HM
Bind939394<	Boone	114	581	HM	Iroquois	244	258	HM	Peoria	1,831	1,525	LM
Bureau145156144Jasper147-70HPiatPiatB4101MCalhoun2042HMJefferson7218HMPike31423HMCaroll178140HMJoraviess240-84HMPoper57220HMCass27763HMJoraviess240-84HPolaski9047HMChampaign1322164IAJoraviess240-84HPulaski90470HMChristian462-13HSonson3.285.36LRandolp53-56HChristian182174Kankaee844177LHRackalad162170HClark184184HMKankaee844177LHRackalad162162162162Clark24579HMKankaee844177LHRackalad162	Brown	93	-32	Н	Jackson	740	142	ΗМ	Perry	226	108	HM
Calnoun2042HMJefferson7218HMPike734934934934934Carollo17814014010 pariess24014014010paries14014010paries140 <t< td=""><td>Bureau</td><td>458</td><td>56</td><td>HM</td><td>Jasper</td><td>147</td><td>-70</td><td>Н</td><td>Piatt</td><td>84</td><td>101</td><td>HM</td></t<>	Bureau	458	56	HM	Jasper	147	-70	Н	Piatt	84	101	HM
Carcoil1781414Jersey20810514Pope572.2HCass275.314Johoson2.40-8.4HPulaski9.04.0HChampaign132216.3414Johnson2.62-7.24HPutnam9.04.0HChristian4.62-7.3HKane5.425.360LRandolph5.535.60LRandolph5.545.60LClark18.817.9HKane5.555.67HR6.611.621.621.621.62Clark2.6417.9HKane2.556.49HScaland1.621.621.621.62Clark2.6417.9KKane2.956.49LScananto1.621.621.621.62Clark5.77.84KKane2.956.49LScananto1.621.621.621.62Clark5.77.84KKane2.956.49KScananto1.62<	Calhoun	20	42	ΗМ	Jefferson	721	8	ΗМ	Pike	314	23	HM
CassenS77S	Carroll	178	14	HM	Jersey	208	105	НМ	Pope	57	-22	Н
Champaign1,3221,634LMJohnson236-124HPutnam7,90-3,00HChristian462-3-3HKane3,4285,360LRandolph-3,53-5,60HClark188188HMKankakee8441,170LMRichland2,55-5,00HClay25479HMKendall555807HMRock Island-1,6281,628-1,628Clay25479HMKendall2,9566,469LSangarnon1,7971,286HClos314644HMLaker2,9566,469LSangarnon1,7971,286HCode52,673,706LLaker2,9566,469LSangarnon1,7971,286HCode52,673,707LLaker2,9566,469LSangarnon1,7971,286HCode52,673,707LLLaker2,9566,469LSangarnon1,7971,286HCode52,673,707LLLaker2,9565,467LLSangarnon1,9701,286LCode535,707LLLSangarnon1,797LLSangarnon1,7971,286LCode5,707LLLSangarnon1,797LLLSangarnon<	Cass	277	63	ΗМ	Jo Daviess	240	-84	Н	Pulaski	90	47	HM
Christian462-13HKane3,4285,360LRandolph5,33-5,60HClark188188188148Kankakee8441,77LMRichland2,555,00HClay25479HKendall555807HRocklatant1,6281,402LClinton246133HKnox6042,10HSaigaront1,7071,286LColes314644HLakence2,6586,469LSaigaront1,7071,286LCondort52,678,708LLakence2,6588,708LSaigaront1,7071,286LCondort530-633HLakence2,6588,708HScittler9,7081,7081,7081,7081,708Comberland1233,20HLakence1,408 <td>Champaign</td> <td>1,322</td> <td>1,634</td> <td>LM</td> <td>Johnson</td> <td>236</td> <td>-124</td> <td>Н</td> <td>Putnam</td> <td>79</td> <td>-30</td> <td>Н</td>	Champaign	1,322	1,634	LM	Johnson	236	-124	Н	Putnam	79	-30	Н
Clark188188HMKankakee8441,177LMRichland2555.07HMRichland1.6281.402LMClay246133HMKandal555807HMSaline4.1485.04HMClinton246134644HMKanca2.9566.469LSalgamon1.7971.286LMColes314645HMLaker2.9566.469LSchuyler10.001.5261.64Cawford350463LLawrence22687HMSchuyler10.001.611.61Cawford350463HMLawrence22687HMSchuyler1.631.411.61Deklab4531.0781.08Livingston4264.44HMSchuyler1.631.611.61Deklab4531.0781.08Livingston4.141.411.411.411.411.411.41Deklab4541.07 <td>Christian</td> <td>462</td> <td>-13</td> <td>н</td> <td>Kane</td> <td>3,428</td> <td>5,360</td> <td>L</td> <td>Randolph</td> <td>353</td> <td>-36</td> <td>Н</td>	Christian	462	-13	н	Kane	3,428	5,360	L	Randolph	353	-36	Н
Clay2547914Kendall55580714Reckland1,621,4021,403Clinton246136414Knox642,1566,4691Sainer3,1031,2031,203Clos323,2031,40Lakale2,8689,7031,40Schuyler1001,2031,2031,203Cawford350-63.71,40Lawrence2,668,701,405,6049,202,4021,403Cumberland12.33,201,40Lawrence2,628,701,405,6049,202,4021,40Cumberland12.33,201,40Lawrence2,628,701,405,6049,202,4021,40Dekale1,321,021,40Lawrence1,413,401,401,401,401,401,40Dekale1,231,021,40Lawrence1,411,4	Clark	188	118	HM	Kankakee	844	1,177	LM	Richland	255	-50	Н
Clinton246134MKnox604210MSaline41458MColes3446441442.9566.469LSanganon1.7971.268LCook52.673.706LLaSalle858979LMSchuler1001.501.63Crawford350-633HLawrence2.2687HScott9202.0MCumberland12332MLee144339HSchuler1.631.411.41Deklab4351.078LMIcingston4.344.44HSchuler2.992.4521.41Deklab1.231.07MLogan1.142.14MSchuler2.992.4521.41Deklab2.1473MIcogan1.181.49MSchuler2.992.4521.41Deklab2.1473MIcogan1.181.49MSchuler3.091.633.093.013.013.013.01Deklab2.151.40Macount1.181.141.411.411.411.411.411.411.411.41Deklab2.14MMcount1.181.141.411.411.411.411.411.411.411.411.411.411.411.411.411.411.411.411.411.411.41<	Clay	254	79	НМ	Kendall	555	807	НМ	Rock Island	1,628	1,402	LM
Cloles314644HMLake2,9566,469LSangamon1,7971,286LMCook52,0273,8706LLaSalle858979LMSchuler100-15.0HCawford350-163HLawrence226870HMSchuler9202.0HMCumberland12332HMLee114339HMShelby163141HMDeKalb.4351,078LMLigaston4.44HMSchuler2,9912,452LMDeWitt21473HMLogan1,181,49HMSchehson4.666.64HMDuglas1262.994.64M1,181,49LMStephenson4.666.64HMDuglas1263.64HMMacon1,181,49LMTazewell7308.63HMDuglas126126MMMacon1,181,49LMTazewell7308.63HMDuglas126126MMMacon2,121,42LMTazewell7308.63HMDuglas126126MMMacon2,121,42LMVermilon9.331,0761,01Duglas126126MMMacon2,121,42LMVermilon1,331,021,011,011,011,01Edwards1261	Clinton	246	113	HM	Knox	604	221	НМ	Saline	414	58	HM
Cook52,26758,708LLaSalle858979LMSchuyler100-15HCawford350-163HLawrence268870HMScott9202MCumberland123320HMLee114339HMShelby163141HMDeKalb4351,078LMLivingston43444HMSt. Clair2,9912,452LMDeWitt21473HMLogan174214HMStarkon760184HMDuglas126329HMMacon1,1181,490LMStephenson496654HMDuglas2,6785,462LMacon7,3039HMTacewell73083HMEdgar2,678167HMMacon2,2121,742LMUnion2311,0781,078HMEdwards40366HMMarion600357HMVermilion2331,0761,011,01Edwards164164Marion1572,14HMValence1,031,01 <t< td=""><td>Coles</td><td>314</td><td>664</td><td>НМ</td><td>Lake</td><td>2,956</td><td>6,469</td><td>L</td><td>Sangamon</td><td>1,797</td><td>1,286</td><td>LM</td></t<>	Coles	314	664	НМ	Lake	2,956	6,469	L	Sangamon	1,797	1,286	LM
Cawford350-163HLawrence22687HMScott922HMCumberland12332HMLee114339HMShelby163140140DeKalb4351.078LMLivingston44HMSt. Clair2.9912.452LMDeWitt21473HMLogan1.14211HMSt. Clair2.9912.452LMDouglas126329HMMacon1.181.149LMStephenson4.664.64HMDuPage2,7855,462LMacoupin7.6639HMTazewell7.608.631.07Edgar2,67167HMMation2.121.742LMUnion2.131.071.07Edwards405,462HMMation2.121.742LMUnion9.331.0761.07Edwards163164HMMarion6.043.75HMVermilion9.331.0761.01Edwards163164HMMarion1621.141.011.011.011.011.011.01Edwards163164HMMarion1.021.011.011.011.011.011.011.011.01Edwards1631641481.011.011.011.011.011.011.011.011.011.01	Cook	52,267	38,706	L	LaSalle	858	979	LM	Schuyler	100	-15	Н
Cumberland12332HMLee114339HMShelby163141HMDeKalb4351,078LMLivingston43444HMSt. Clair2,9912,452LMDeWitt21473HMLogan174211HMStark7618HMDouglas126329HMMacon1,1181,149LMStephenson496654HMDuPage2,7855,462LMacoupin73639HMTazewell730863HMEdgar267167HMMatison2,2121,742LMUnion281-92HEdgar267167HMMarion600357HMVermilion9331,076LMEdmards13638HMMarion15721HMVabash13045.0HFingham154386HMMason21438HMVarren29886.0HFord133132HMMasac192121HMVashington11053.0HFanklin600248HMMcDonough1451,590LMVarnen20291.0HFord133152HMMcDonough1,5101,590LMVahite163.05,682LFord453162HMMcLean1,5101,590	Crawford	350	-163	н	Lawrence	226	87	ΗМ	Scott	92	2	HM
DeKalb4351,078LMLivingston43444HMSt. Clair2,9912,452LMDeWitt2147374Logan174210HMStark7618HMDouglas126329HMMacon1,181,149LMStephenson496654HMDuPage2,7855,462LMacoupin73639HMTazewell730863HMEdyard267167HMMalison2,2121,742LMUnion281920HEdwards4636HMMarion600357HMVermilion9331,076LMEdwards154386HMMarion167214HMVarren9331,076HEffingham15421814MMasac192121HMVarren218864HFord13313214MMasac192121HMVarren21891HFanklin600248HMMcDonough454150LMVarren21091HFulton453162HMMcDonough1511,510LMVarren21091HFulton453162HMMcDonough1,5111,510LMVarren2,6135,652LGalatin40120HMMcLean1,6101	Cumberland	123	32	HM	Lee	114	339	НМ	Shelby	163	141	HM
DeWitt21473HMLogan17421HMStark7618HMDouglas126329HMMacon1,1181,49LMStephenson496654HMDuPage2,7855,462LMacoupin73639HMTazewell730863HMEdgar267167HMMadison2,2121,742LMUnion281-92HEdwards4036HMMarion600357HMVermilion9331,076LMEffingham154386HMMarshall1571HMWabash13045.HMFayette138132HMMason21438HMWashington10053HMFord133132HMMaconuple140121HMWashington10053HMFanklin600248HMMcDonuple405129HMWashington10053HMFanklin600248HMMcLean1301,590LMWinte663575HMGallatin40102HMMcLean1501,64014MWinte6435,682LGrundy274525HMMcLean1501,64014MWinte6,1035,052LGrundy243545HMMonroe150164 </td <td>DeKalb</td> <td>435</td> <td>1,078</td> <td>LM</td> <td>Livingston</td> <td>434</td> <td>44</td> <td>НМ</td> <td>St. Clair</td> <td>2,991</td> <td>2,452</td> <td>LM</td>	DeKalb	435	1,078	LM	Livingston	434	44	НМ	St. Clair	2,991	2,452	LM
Douglas126329HMMacon1,1181,49LMStephenson496654HMDuPage2,7855,462LMacoupin73639.HMTazewell730.863.HMEdgar267167HMMadison2,2121,742LMUnion28192.HEdwards4036.HMMarion600.357.HMVermilion933.1,076.LMEffingham15438.HMMarshall157.21.HMVabash130.45.HMFayette218218.HMMason214.38.HMVabash100.53.HMFord33.132.HMMason214.38.HMVabash100.53.HMFayette33.132.HMMason214.38.HMVabash100.53.HMFord33.132.HMMason121.HMVabash100.53.HMFayette453.162.HMMcDenough453.150.LMVabash100.53.15.Futon453.162.HMMcHenry1,519.LMVahre180.663.57.14.Galatin40.102.HMMcHenry150.164.14.Villianson802.24.14.Grundy274.525.HMMener<	DeWitt	214	73	ΗM	Logan	174	221	НМ	Stark	76	18	HM
DuPage2,7855,462LMacoupin73639HMTazewell730863HMEdgar267167HMMadison2,2121,742LMUnion281-92HEdwards4036HMMarion600357HMVermilion9331,076LMEffingham154386HMMarshall15721HMWabash13045HMFayette218218HMMason21438HMWarren29886.4HMFord133132HMMason192121HMWashington11053HMFanklin600248HMMcDonough405194144Wayne202091HMFulton453162HMMcLean13511,590LMWhiteside663575HMGalatin40102HMMenard130582L1434LMWillamson602240HMGrundy274525HMMencer150164HMWillamson3,0773,075LHamilton76434HMMontgomey45427HMWoodford120488HM	Douglas	126	329	ΗМ	Macon	1,118	1,149	LM	Stephenson	496	654	HM
Edgar267167HMMadison2,2121,742LMUnion281-92HEdwards4036016M600357HMVermilon9331,076LMEffingham154386HMMarshall15721HMWabash130450HMFayette218218HMMason21438HMWarren29886.0HMFord133132HMMason192121HMWarren20891.0HMFanklin600248HMMcDonough405192HMWayne22091.0HMFulton453162HMMcDenough1,5101,590LMWhiteside66.357.5HMGalatin400102HMMcLean3471,434LMWilliamson80224.0HMGrundy274525HMMercer150164HMWilliamson8022.00LMHamilton7645HMMonce97124HMWoodford120488HM	DuPage	2,785	5,462	L	Macoupin	736	39	НМ	Tazewell	730	863	HM
Edwards4036HMMarion600357HMVermilion9331,076LMEffingham154386HMMarshall15721HMWabash13045HMFayette218218HMMason21438HMWarren29886HMFord133132HMMason12114MWasnington10053HMFord33132HMMcDonough40519214Mayne22091HMFulton453162HMMcDenough4051,990LMWhite180600HMGallatin40102HMMcLean8471,434LMWhiteside663575HMGrundy274525HMMener150164HMWilliamson8022,4035,682LHamilton76453HMMontegomer454124HMWinebago3,0073,075LHamilton24394HMMontegomer45427HMWoodford120488HM	Edgar	267	167	НМ	Madison	2,212	1,742	LM	Union	281	-92	Н
Effingham154386HMMarshall15721HMWabash13045HMFayettee218218HMMason21438HMWarren29886HMFord133132HMMasoac192121HMWashington11053HMFranklin600248HMMcDonough40519214Wayne22091HMFulton453162HMMcDenough405199LMWhite180600HMGalatin40102HMMcLean8471,434LMWhiteside663575HMGrene18359HMMenard13069HMWillamson802240HMHamilton76455HMMonroe97124HMWoodford120488HM	Edwards	40	36	HM	Marion	600	357	НМ	Vermilion	933	1,076	LM
Fayetteq218218HMMason21438HMWarren29886HMFord133132HMMassac192121HMWashington11053HMFranklin600248HMMcDonough405-19HWayne22091HMFulton453162HMMcHenry1,3511,590LMWhite18060HMGallatin40102HMMcLean8471,434LMWhiteside663575HMGreene18359HMMenard13069HMWill2,4135,682LGrundy274525HMMercer150136HMWilliamson802240HMHamilton7645HMMontgomery45427HMWoodford120488HM	Effingham	154	386	ΗМ	Marshall	157	21	ΗМ	Wabash	130	45	ΗM
Ford133132HMMassac192121HMWashington11053HMFranklin600248HMMcDonough405-190HMayne220910HMFulton453162HMMcHenry1,3511,590LMWhite180600HMGallatin400102HMMcLean8471,434LMWhiteside663575HMGrenen18359HMMenard13069HMWill2,4135,682LGrundy274525HMMercer150136HMWilliamson802240HMHamilton76454HMMontgomery45427HMWoodford120488HM	Fayette	218	218	HM	Mason	214	38	НМ	Warren	298	86	HM
Franklin600248HMMcDonough405-19HWayne22091HMFulton453162HMMcHenry1,3511,590LMWhite18060HMGalatin40102HMMcLean8471,434LMWhiteside663575HMGrener18359HMMenard13069HMWill2,4135,682LGrundy274525HMMercer150136HMWilliamson802240HMHamilton7645HMMontgomery45427HMWoodford120488HM	Ford	133	132	ΗМ	Massac	192	121	ΗМ	Washington	110	53	HM
Fulton453162HMMcHenry1,3511,590LMWhite18060HMGallatin40102HMMcLean8471,434LMWhiteside663575HMGreene18359HMMenard13069HMWill2,4135,682LGrundy274525HMMercer150136HMWilliamson802240HMHamilton7645HMMonroe97124HMWoodford120488HM	Franklin	600	248	НМ	McDonough	405	-19	Н	Wayne	220	91	HM
Gallatin40102HMMcLean8471,434LMWhiteside663575HMGreene18359HMMenard13069HMWill2,4135,682LGrundy274525HMMercer150136HMWilliamson802240HMHamilton7645HMMonroe97124HMWinebago3,0073,075LMHancock24394HMMontgomery45427HMWoodford120488HM	Fulton	453	162	ΗМ	McHenry	1,351	1,590	LM	White	180	60	ΗM
Greene 183 59 HM Menard 130 69 HM Will 2,413 5,682 L Grundy 274 525 HM Mercer 150 136 HM Willamson 802 240 HM Hamilton 76 45 HM Monroe 97 124 HM Winnebago 3,007 3,075 LM Hancock 243 94 HM Montgomery 454 27 HM Woodford 120 488 HM	Gallatin	40	102	HM	McLean	847	1,434	LM	Whiteside	663	575	HM
Grundy 274 525 HM Mercer 150 136 HM Williamson 802 240 HM Hamilton 76 45 HM Monroe 97 124 HM Winnebago 3,007 3,075 LM Hancock 243 94 HM Montgomery 454 27 HM Woodford 120 488 HM	Greene	183	59	НМ	Menard	130	69	ΗМ	Will	2,413	5,682	L
Hamilton 76 45 HM Monroe 97 124 HM Winnebago 3,007 3,075 LM Hancock 243 94 HM Montgomery 454 27 HM Woodford 120 488 HM	Grundy	274	525	НМ	Mercer	150	136	НМ	Williamson	802	240	HM
Hancock 243 94 HM Montgomery 454 27 HM Woodford 120 488 HM	Hamilton	76	45	НM	Monroe	97	124	ΗМ	Winnebago	3,007	3,075	LM
	Hancock	243	94	HM	Montgomery	454	27	HM	Woodford	120	488	HM

Source: ISBE, Head State Collaboration Office and ACS

Race and ethnicity data not available.

REACH LEVEL: Low - L, Low Moderate - LM, High Moderate - HM, High - H

Footnote: Data are at the site-level. Publicly funded preschool includes Head Start (HS), Preschool For All (PFA), and Preschool For All Expansion. Eligibility is defined as children living below 200 percent of poverty, which is an approximation of the eligibility thresholds across the three programs: 100 percent of poverty for HS, 200 percent of poverty for PFA Expansion, and 185 percent of poverty for PFA to capture those children considered at risk for academic failure.

Fiscal Resources

Budgets reflect choices and priorities. To illustrate the choices the State has made for investing in families with young children age five and under, the Fiscal Scan analyzes publicly available data from the Governor's Office of Management and Budget and various state agencies (for details, see the Methodology-Fiscal Analysis section in the Introduction). Summaries entitled Fiscal Resources are included at the end of each domain section (Family Stability, Health, and Early Care and Education) and feature figures and tables that summarize the investments assigned to that domain.

Figure 22 illustrates that within the total Illinois Operating Budget for Fiscal Year 2018 (\$63.684 billion), a 4.9 percent share (\$3.127 billion) is spent on families with young children. This includes all funds appropriated by the State, from both federal and state sources of revenue.

FIGURE 22. Illinois State Operating Budget and Total Spending for Families with Young Children, FY2018 (in millions)¹⁵³

In addition, Illinois benefits from \$754 million in federal funds that do not pass through state agencies but which the Risk and Reach Advisory Council determined were important to families with young children. These investments are the Supplemental Nutrition Assistance Program, SNAP, which goes directly to families with young children, and Head Start (including Early Head Start) funds that go directly to administering agencies. The addition of these federal funds bring the total amount of investment in families with young children to \$3.881 billion (as illustrated in Figure 23).

FIGURE 23. Total Spending for Families with Young Children from both State Operating Budget and Select Federal Programs, FY2018 (in millions)¹⁵⁴

Source: Risk and Reach analysis of Governor's Office of Management and Budget, Illinois Comptroller's Office, Illinois Department of Children and Family Services, Illinois Department of Healthcare and Family Services, Illinois Department of Human Services, Illinois Department of Public Health, Illinois Head Start Association, Illinois State Board of Education, and U.S. Department of Agriculture data.

When analyzing the \$3.881 billion by domain of child well-being (Family Stability, Health and Early Care and Education), Figure 24 summarizes the total investment per domain combining three sources (state, federal appropriated by the State, and federal SNAP/Head Start/Early Head Start). Family Stability investments total \$535 million, Health investments comprise the largest share with \$1.771 billion, and Early Care and Education investments total \$1.576 billion.

FIGURE 24. Resources for Families with Young Children by Domain of Child Well-Being, FY2018 (in millions)¹⁵⁵

\$1,771, 46%

Early Care and Education

The early years lay a foundation for future children's academic success. Participation in high-quality child care and early learning experiences provides young children an opportunity to learn and apply the problem-solving, academic, and social-emotional skills that will support their education. Developmental and social-emotional screenings, Early Intervention, and early childhood special education services play an important role in identifying and addressing factors that could impede a child's development and path to academic and life success as well as support parents to understand and address any concerns or delays.

The Illinois Department of Human Services (IDHS), Illinois State Board of Education (ISBE), and Governor's Office of Early Childhood Development (GOECD) are the primary state entities administering programs focused on young children's early care and education. In addition to federal resources for education and intervention that are administered by the State, Illinois invests state funds to expand access, improve quality, and ensure equity in child care, infant/toddler programs, preschool programs, and supports children and families through home visiting programs. Further details of each Early Care and Education category are provided in Figures 46-50.

FIGURE 46. Early Care and Education Expenditures by Category, FY2018¹⁵⁶

FIGURE 47. Home Visiting Expenditures by Program, FY2018¹⁵⁷

FIGURE 48. Head Start Expenditures by Program, FY2018¹⁵⁸

Source: Risk and Reach analysis of Governor's Office of Management and Budget and Illinois Head Start Association data.

FIGURE 49. Early Childhood Block Grant and Preschool Expansion Expenditures by Program, FY2018¹⁵⁹

FIGURE 50. Special Education Expenditures by Program, FY2018¹⁶⁰

Early Childhood Special Education

Source: Risk and Reach analysis of Governor's Office of Management and Budget, Illinois State Board of Education, Illinois Department of Human Services data.

TABLE 41. Early Care and Education Expenditures, FY2018 (in millions)

Category/Program	FY18 Actual Expenditures	Funding Source	Implementing Agency
Child Care			
Child Care Assistance Program (CCAP)	\$445.57	State and Federal	IDHS
Child Care Subtotal	\$445.57		
Home Visiting ¹⁶¹			
Healthy Families	\$7.95	State	IDHS
Maternal Infant Early Childhood Home Visiting (MIECHV)	\$8.43	Federal	IDHS & GOECD
Parents Too Soon	\$8.26	State and Federal	IDHS
Home Visiting Subtotal	\$24.65		
Head Start ¹⁶²			
Head Start	\$259.60	Federal	163
Early Head Start	\$100.40	Federal	163
Migrant Head Start	\$3.40	State	IDHS
Head Start Subtotal	\$363.40		
Early Childhood Block Grant and Presch	nool Expansion		
Early Childhood Block Grant (includes Prevention Initiative)	\$443.70	State	ISBE
Preschool For All Expansion	\$18.50	Federal	ISBE
Early Childhood Block Grant and Preschool Expansion Subtotal	\$462.20		
Special Education			
Early Intervention ¹⁶⁴	\$261.80	State and Federal	IDHS
Early Childhood Special Education	\$18.00	Federal	ISBE
Special Education Subtotal	\$279.80		
EARLY CARE AND EDUCATION TOTAL	\$1,575.61		

Source: Governor's Office of Management and Budget, Illinois Department of Human Services, Illinois Head Start Association, and Illinois State Board of Education.

Conclusion

RISK

There are an estimated 945,752 children under age five in Illinois (Map 1). As detailed in Table 6 (and illustrated in Map 2), 15 of the 102 counties are in the Low Overall Risk category, 36 are in the Low-Moderate Overall Risk category, 39 are in the High-Moderate Overall Risk category, and 12 are in the High Overall Risk category. An estimated 643,768 children live in either the High-Moderate or High Overall Risk counties, representing approximately 68 percent of all children under age five in Illinois. Risk is in comparison to other counties in the state and is not a statement of risk compared to any other county or state in the country. This information, complemented by a the fiscal scan, is a tool to be used by all early childhood stakeholders – governmental and non-governmental — in order to better inform policy and funding decisions, and the distribution of critical resources for children, families, and communities,

REACH

Good data are critical tools that can help inform programmatic investment decisions regarding the distribution of resources that support Illinois's young children. Based on data provided by the State, investments for families with young children were mapped to show the coverage of these programs juxtaposed with the Overall Risk in each county. These maps provide a visual display of services and risk. There may be various reasons why there is not a direct correlation between the services and risk, and program leaders can use this information to better calibrate their programs to ensure the maximum utilization of resources.

LIMITATIONS

The production of this Report revealed both data and process limitations. Four areas that merit mentioning include: (1) the overall Census undercount of the birth to five population; (2) lack of uniformity in the collection and disaggregation of data across subgroups; (3) the current policy climate; and, (4) limiting eligibility criteria to one factor.

- Given the explicit focus of this Report on the child population age five and under, it is important to note that the Census Bureau considers this segment "hard to count." The undercount across the country is estimated at five percent — or roughly one million children. Various reasons contribute to the undercounting, and the Census Bureau has launched a campaign this year to ensure a more complete count in the 2020 Census. More information on local initiatives can be found at IllinoisCensus2020.com.
- 2. Collecting data from multiple sources is a challenge because of inconsistency in both availability of detailed race data for a given year and how agencies are, or are not, collecting data on race and/or ethnicity for a specific indicator. Furthermore, when segmenting data by the birth to five population, there were limitations with some data points that left no option other than applying a formula to generate an estimate of the impact on children age five and under. In general, when data were not available for subgroups the Report indicates the discrepancy.
- 3. The Advisory Council selected Risk Indicators that would represent risk factors validated in child development research. Furthermore, the selection of Reach Indicators met the criterion of representing policy solutions that aid in mitigating risk — and specifically, policies that when mapped could indicate improved reach. While there was a robust conversation on limiting the risk factors to a manageable number, the number of Illinois Risk and Reach Indicators is nearly triple the total number that other states have included in their versions of a Risk and Reach report. The inclusion or omission of each indicator was informed by the present policy climate, and therefore could shift in future iterations of this Report.

One example of an excluded Reach Indicator was child health insurance coverage. This indicator was excluded because for most of the past decade Illinois has had almost complete coverage of children age five and under. During the production of this Report, however, news broke of a national trend indicating decreased participation in Child Health Insurance Programs across the country — including Illinois.¹⁶⁵ Accordingly, this indicator may be included in future versions of the Report.

 Lastly, our analysis of several Reach Indicators (for example, the Supplemental Nutrition Assistance Program) limit eligibility estimation to only income criteria. In practice, programs often have other eligibility criteria, such as citizenship or household

assets, and some programs use categorical eligibility, whereby eligibility is based on the individual's enrollment in another means-tested program. The Report indicates when this limitation occurred.

Please feel free to share any feedback or comments on this data, analysis, or Report, as our hope is for this to be an evolving project that will adapt to meet usage demands. We also would like to know how your stakeholder group used the information. Please contact policy@erikson.edu with your comments and suggestions.

Appendix

APPENDIX 1. Number of Counties and Children at Each Risk Level

Risk level	Number of counties	Risk score range	Number of children (0-5)
Low	15	(-1.08, -0.48)	95,958
Low-Moderate	36	(-0.47, -0.001)	206,026
High-Moderate	39	(-0.00, 0.47)	570,397
High	12	(0.48, 1.94)	73,371
Total	102	(-1.08, 1.94)	945,752

APPENDIX 2. Risk Indicator Data by County

County	%	%	%	%	%	%	Rate	Rate	Rate	%	%	Rate	%	%	%
Adams	7.1	4.4	19.1	9.5	22.0	3.1	31	15	*	10.3	10.9	345	52.2	71.3	67.0
Alexander	10.1	25.2	56.1	30.0	28.6	7.1	49	14	*	10.1	9.4	909	66.7	90.6	82.5
Bond	7.4	4.8	31.3	10.1	20.8	6.8	26	18	*	6.8	2.2	34	57.0	63.4	57.7
Boone	11.8	8.2	19.1	12.8	30.2	0.0	9	15	*	8.2	2.0	156	86.9	77.1	73.1
Brown	4.4	3.5	26.2	7.6	16.9	11.4	12	15	*	10.3	8.9	138	58.8	72.3	78.7
Bureau	8.6	7.6	23.4	12.4	23.0	1.9	20	18	*	14.0	8.1	111	81.1	64.7	57.9
Calhoun	6.3	2.5	18.3	*	23.3	1.8	10	20	*	14.6	3.7	*	48.6	48.4	58.1
Carroll	8.0	2.9	15.6	11.2	22.6	0.7	20	14	*	8.7	5.6	69	78.0	55.3	41.6
Cass	15.4	4.8	30.6	11.3	18.2	0.6	24	0	*	10.4	7.0	487	75.6	82.0	83.2
Champaign	7.0	5.9	22.7	13.8	32.7	1.5	24	11	31	9.5	1.4	490	76.4	68.2	63.1
Christian	6.8	6.5	21.9	12.2	20.9	4.5	37	27	*	11.2	3.1	88	70.7	70.9	63.3
Clark	4.4	4.9	21.6	13.4	22.1	2.0	25	12	*	8.9	2.9	85	95.9	57.3	59.5
Clay	8.2	5.1	29.4	14.8	15.5	4.2	16	7	*	7.5	6.2	65	86.3	64.3	61.3
Clinton	5.1	1.0	14.2	8.6	20.1	4.4	14	16	*	10.7	0.9	108	62.0	44.7	43.4
Coles	8.3	6.2	29.0	14.5	29.8	1.8	41	11	*	9.7	2.9	322	56.0	67.6	70.1
Cook	10.2	8.7	24.5	14.4	39.3	2.0	8	21	65	10.5	2.8	665	77.0	64.8	63.5
Crawford	12.4	2.3	15.6	10.3	20.7	1.0	48	5	*	7.8	3.6	265	87.6	66.7	62.2
Cumberland	5.6	10.6	24.3	9.1	18.1	2.7	29	9	*	10.3	2.4	75	78.7	66.4	61.1
DeKalb	6.1	6.7	24.3	15.7	36.1	0.2	18	16	*	8.8	1.7	292	75.0	66.8	61.3
DeWitt	4.2	5.0	24.0	9.5	17.8	1.1	25	31	*	10.2	12.2	56	70.4	54.2	59.9
Douglas	31.3	7.9	22.9	10.7	21.0	2.9	10	10	*	11.5	5.6	198	68.2	72.2	72.6
DuPage	5.3	3.5	9.9	12.0	32.4	0.7	6	14	47	9.3	1.7	85	70.0	51.0	44.3
Edgar	10.3	7.8	33.4	12.5	22.9	2.1	37	17	*	10.8	5.0	220	63.2	70.6	74.9
Edwards	2.8	3.7	17.5	11.1	16.0	0.0	21	15	*	9.7	3.4	29	72.2	44.7	37.6
Effingham	4.2	3.7	16.4	10.6	18.0	1.9	24	6	*	9.3	3.3	147	70.9	52.2	53.2
Fayette	12.1	11.7	26.4	13.9	18.5	1.9	31	23	*	7.9	3.8	117	74.4	66.3	57.8
Ford	6.8	4.2	22.5	12.0	18.9	0.0	22	0	*	9.9	11.6	271	73.0	64.7	62.8
Franklin	10.2	11.4	32.3	15.0	22.2	5.4	47	33	*	11.9	8.4	102	75.6	68.9	73.6
Fulton	7.6	12.1	24.7	14.3	22.0	0.6	23	17	*	9.2	8.6	77	87.6	74.9	75.8
Gallatin	9.8	12.6	19.6	*	16.4	0.0	30	56	*	15.7	2.2	122	81.3	85.7	66.7
Greene	12.9	9.6	21.2	11.9	20.4	11.8	22	15	*	7.6	5.1	230	83.5	67.2	68.6
Grundy	4.3	3.7	13.8	9.5	28.2	0.6	8	28	*	11.1	3.7	73	77.2	60.5	59.5
Hamilton	12.0	3.8	12.2	10.9	19.3	3.7	22	24	*	14.1	1.7	46	68.1	50.0	42.3
Hancock	3.8	7.6	24.7	9.9	16.6	4.5	20	0	*	7.0	6.7	63	67.6	60.4	60.9

* Data not available.

Hasena Europion provide Cita Cast Cost Hore Harestreet Provide Deales Deales Preem Hits Loose Exposite Freedom Preem and Exposite Freedom Preem indered Provide Cost Harestreet Preem indered Provide Cost Preem indered Preem indered Provide Cost Preem indered Provide Cost Preem indered Preem ind

County	%	%	%	%	%	%	Rate	Rate	Rate	%	%	Rate	%	%	%
Hardin	14.3	3.5	25.9	10.3	21.1	0.0	67	24	*	8.6	12.0	104	84.4	93.2	62.8
Henderson	5.6	4.5	27.9	11.5	15.8	0.0	31	0	*	9.9	8.8	*	51.4	74.2	83.9
Henry	8.6	7.7	20.9	11.5	19.0	2.3	24	8	*	11.3	7.3	119	81.9	71.3	63.6
Iroquois	9.0	14.0	29.5	12.2	24.8	1.7	13	24	*	11.1	6.4	117	74.4	57.1	60.5
Jackson	9.4	11.0	28.5	16.7	35.9	7.8	26	20	*	10.1	2.0	393	72.5	79.5	74.2
Jasper	4.3	2.9	6.7	7.5	17.6	2.1	26	31	*	6.1	3.3	0	74.7	50.6	43.8
Jefferson	9.1	6.8	32.9	14.4	25.7	14.4	60	16	*	14.9	4.3	626	69.3	70.6	73.8
Jersey	3.7	3.0	17.8	8.6	24.9	1.6	33	18	*	10.0	2.1	157	90.3	42.1	34.1
Jo Daviess	4.3	1.4	11.4	9.4	24.0	0.0	26	9	*	6.8	4.5	148	87.0	63.2	57.7
Johnson	7.3	11.6	18.4	10.6	20.3	1.6	20	8	*	6.5	12.9	267	58.8	78.1	74.2
Kane	13.5	6.5	17.6	15.3	34.2	0.8	10	12	36	10.7	3.0	189	82.3	70.7	63.8
Kankakee	8.6	11.9	24.0	11.8	29.8	2.7	12	16	*	11.7	4.6	264	76.9	69.7	65.6
Kendall	2.9	3.1	7.5	11.4	31.7	0.5	3	21	38	10.7	1.7	84	79.6	46.8	51.6
Knox	8.4	11.4	31.9	17.0	23.1	1.9	25	8	*	8.4	10.5	309	76.0	65.9	67.5
Lake	9.2	4.8	14.7	11.2	33.3	0.8	15	13	44	10.0	1.6	144	78.2	58.3	54.3
LaSalle	9.4	6.9	23.9	10.9	26.4	1.6	28	17	44	9.6	6.4	121	79.4	66.2	71.7
Lawrence	9.6	18.1	31.5	10.5	19.2	2.9	24	12	*	9.0	5.8	98	86.7	65.7	65.1
Lee	5.5	9.3	12.6	12.1	21.3	0.7	15	12	*	5.8	5.3	181	89.9	72.6	74.5
Livingston	8.7	5.6	17.9	11.2	23.2	1.7	27	27	*	6.9	5.2	151	59.9	65.5	60.3
Logan	8.4	1.9	18.4	13.2	20.3	3.2	39	20	*	11.8	5.1	148	63.1	70.7	64.2
McDonough	11.6	6.4	27.2	13.1	24.9	3.0	30	13	*	8.1	8.0	250	73.8	76.2	71.7
McHenry	6.3	5.1	12.5	18.4	32.3	0.7	10	18	47	9.9	2.6	96	76.5	57.9	53.9
McLean	4.4	2.4	13.7	13.6	25.6	1.0	15	13	44	11.1	3.8	280	70.9	60.5	57.8
Macon	11.4	8.4	37.8	17.7	24.4	1.6	52	18	51	13.0	10.4	396	80.6	73.7	72.8
Macoupin	7.2	6.9	23.2	10.9	21.1	4.1	33	22	*	12.5	5.8	169	71.1	64.6	65.3
Madison	6.5	9.6	20.0	17.1	25.7	3.0	23	27	*	8.9	3.0	267	69.7	63.4	61.0
Marion	15.5	9.1	33.3	11.6	24.1	6.0	23	29	*	10.1	5.5	375	68.6	63.3	63.6
Marshall	12.0	6.9	20.2	13.4	19.1	1.1	18	8	*	12.0	8.4	132	51.7	57.4	53.2
Mason	9.9	7.8	25.6	7.0	24.5	1.1	54	0	*	6.1	11.7	280	81.6	63.6	63.0
Massac	6.1	14.8	31.9	8.2	27.2	0.9	22	34	*	11.0	7.2	302	69.9	64.0	37.0
Menard	5.3	15.4	27.5	10.8	20.9	0.5	14	8	*	12.9	4.2	81	74.8	62.7	62.0
Mercer	7.5	16.3	29.6	10.1	16.0	1.2	25	13	*	11.6	8.7	73	82.1	74.3	70.3
Monroe	1.2	1.8	9.3	8.4	24.5	1.5	8	24	*	5.5	6.0	23	76.3	39.1	25.9
Montgomery	9.0	11.5	23.6	14.4	21.2	5.1	28	24	*	11.1	3.5	91	55.9	66.4	61.8
Morgan	6.3	6.0	18.0	12.5	24.5	1.0	37	14	*	11.1	8.2	227	72.6	61.8	66.0

* Data not available.

County	%	%	%	%	%	%	Rate	Rate	Rate	%	%	Rate	%	%	%
Moultrie	23.9	3.7	22.9	12.4	17.8	3.7	13	0	*	5.0	4.7	7	74.2	58.4	54.9
Ogle	4.8	2.8	16.9	13.6	25.4	0.2	17	25	*	8.6	3.4	43	79.0	65.9	55.1
Peoria	9.2	10.2	27.9	13.5	26.6	3.2	33	18	41	10.1	10.5	551	77.8	66.9	64.5
Perry	11.1	10.9	23.0	11.6	21.7	1.1	39	37	*	12.9	6.7	143	64.2	68.8	72.8
Piatt	4.2	1.2	5.8	10.2	17.8	0.0	14	24	*	11.5	5.3	144	55.7	39.6	50.9
Pike	7.1	7.3	24.1	11.2	19.7	1.6	24	25	*	7.7	5.1	86	69.2	80.4	80.9
Роре	3.7	15.3	20.0	*	23.9	2.8	18	0	*	7.4	12.5	*	80.5	90.9	75.8
Pulaski	18.8	10.6	31.2	20.6	24.4	8.3	29	0	*	8.2	5.9	*	81.8	84.5	83.9
Putnam	6.0	6.6	30.1	8.4	16.6	0.0	31	35	*	14.0	0.0	13	100.0	63.0	57.4
Randolph	10.1	5.7	13.6	9.8	18.3	7.9	25	24	*	9.9	3.5	57	68.6	63.4	61.5
Richland	8.7	3.9	16.2	11.6	16.9	4.5	47	0	*	6.8	5.2	390	61.9	81.7	75.7
Rock Island	12.0	9.6	31.7	15.8	26.4	0.5	24	12	61	9.4	8.1	350	82.3	75.4	70.0
St. Clair	8.3	11.5	30.0	19.2	30.7	2.8	20	15	23	12.1	4.4	585	75.1	67.5	63.9
Saline	11.6	4.4	34.9	10.5	22.6	1.7	42	20	*	11.6	4.5	363	74.9	77.3	78.8
Sangamon	7.8	7.7	28.6	12.5	25.7	1.7	28	17	61	12.2	6.5	768	78.3	66.9	60.9
Schuyler	1.7	1.2	16.3	9.2	15.3	0.0	42	0	*	13.6	8.4	145	85.9	68.8	66.3
Scott	6.0	3.1	33.8	9.0	18.9	0.0	25	19	*	16.0	7.2	0	80.0	68.5	53.7
Shelby	5.5	6.8	15.4	9.9	18.0	0.9	21	5	*	9.8	4.7	8	62.5	59.1	52.9
Stark	10.9	16.0	29.7	11.3	13.9	4.8	17	34	*	6.3	12.4	0	66.0	69.1	60.3
Stephenson	7.7	5.8	28.3	14.4	27.6	3.3	32	9	*	10.7	13.7	117	88.3	65.5	58.8
Tazewell	5.1	4.4	10.6	11.9	19.9	1.0	23	18	38	9.2	3.2	272	78.8	58.3	52.3
Union	12.4	12.0	16.3	9.6	18.3	6.0	58	17	*	6.2	5.7	185	66.5	68.9	60.7
Vermilion	12.9	11.4	36.7	14.4	23.3	2.5	38	29	73	13.8	2.9	802	79.2	75.6	72.0
Wabash	5.4	1.0	14.6	13.9	21.7	8.3	23	35	*	9.6	9.7	131	82.4	71.8	53.8
Warren	20.5	4.3	20.2	14.0	19.6	1.1	24	0	*	8.6	7.8	230	65.2	70.7	73.5
Washington	7.2	1.2	17.5	9.9	18.5	5.5	30	28	*	6.6	4.9	218	84.7	60.8	66.1
Wayne	13.3	3.0	28.8	12.6	18.0	3.7	26	6	*	9.0	3.5	129	71.8	51.3	49.2
White	5.2	12.0	28.2	11.5	17.9	2.6	37	0	*	12.3	4.7	201	78.6	65.6	57.8
Whiteside	7.1	6.6	15.6	14.2	22.9	1.5	27	7	*	8.2	5.5	200	65.0	62.8	65.1
Will	6.8	5.6	12.9	10.6	32.3	1.2	7	19	41	10.4	2.6	156	82.8	62.3	56.6
Williamson	6.6	8.6	29.7	11.8	23.0	3.4	48	22	*	11.7	10.6	121	67.1	61.2	52.8
Winnebago	13.1	8.2	30.6	15.7	30.0	4.2	35	38	63	10.5	5.1	1000	77.8	76.2	72.9
Woodford	2.9	2.7	12.5	11.7	19.6	0.7	14	15	*	9.5	3.2	51	68.2	50.6	48.1

* Data not available.

APPENDIX 3. *Risk Levels by County*

PPENDIX 3	. Risk L	evels l	by Cou	ınty												an
		ucation	n olovn	hent	. (^{5[†]}	۵	Ś	Ň	NSE D	eaths which	d str ⁵	, ne	oosure	n Re	adiness prof	ciency. Profi
	ater	naltonore	ntal Entroy	ertes	d care ou	sing co. on	elessne	reatmen up	Overou ate	nalMorete	erm Bit ad	EXPOSE	ncetixind	ergane	deradenird	Grade Jer?
	- Mr	Q°*	\$ 0	Cv	40				We	<u>م</u>	~~ ~~	11-				0 ⁴
County																
Adams	LM	LM	LM	LM	LM	НМ	НМ	LM	*	НМ	H	HM	L	НМ	HM	LM
Alexander	HM	Н	Н	Н	Н	Н	Н	LM	*	HM	Н	Н	LM	Н	Н	Н
Bond	LM	LM	Н	LM	LM	Н	НМ	НМ	*	L	L	LM	L	LM	LM	LM
Boone	HM	HM	LM	HM	Н	L	L	LM	*	LM	L	LM	Н	Н	HM	HM
Brown	LM	LM	НМ	L	L	Н	L	LM	*	НМ	Н	LM	L	НМ	Н	LM
Bureau	HM	HM	HM	HM	HM	LM	LM	HM	*	Н	HM	LM	HM	LM	LM	HM
Calhoun	LM	L	LM	*	НМ	LM	L	ΗМ	*	Н	LM	*	L	L	LM	L
Carroll	LM	LM	LM	LM	LM	LM	LM	LM	*	LM	LM	LM	HM	L	L	L
Cass	Н	LM	НМ	LM	LM	LM	LM	L	*	HM	НМ	Н	НМ	Н	Н	НМ
Champaign	LM	LM	HM	HM	Н	LM	LM	LM	L	LM	L	Н	HM	HM	HM	LM
Christian	LM	LM	LM	LM	LM	НM	ΗМ	HM	*	НМ	LM	LM	LM	НМ	HM	НМ
Clark	LM	LM	LM	HM	LM	LM	LM	LM	*	LM	LM	LM	Н	LM	LM	LM
Clay	LM	LM	НМ	НМ	L	НМ	LM	LM	*	L	HM	LM	Н	LM	LM	LM
Clinton	LM	L	L	L	LM	HM	LM	LM	*	HM	L	LM	L	L	L	L
Coles	LM	LM	HM	НМ	Н	LM	Н	LM	*	LM	LM	HM	L	НМ	HM	НМ
Cook	HM	HM	HM	HM	Н	LM	L	HM	Н	HM	LM	Н	HM	LM	HM	HM
Crawford	HM	L	LM	LM	LM	LM	Н	L	*	LM	LM	HM	Н	НМ	LM	LM
Cumberland	LM	HM	HM	L	LM	HM	НМ	LM	*	HM	L	LM	HM	HM	LM	LM
DeKalb	LM	LM	HM	Н	Н	LM	LM	LM	*	LM	L	HM	HM	ΗМ	LM	HM
DeWitt	LM	LM	HM	LM	LM	LM	LM	Н	*	HM	Н	LM	LM	L	LM	LM
Douglas	Н	HM	HM	LM	LM	HM	L	LM	*	HM	LM	LM	LM	HM	HM	HM
DuPage	LM	LM	L	LM	Н	LM	L	LM	LM	LM	L	LM	LM	L	L	L
Edgar	HM	ΗM	Н	ΗM	HM	LM	НМ	ΗM	*	HM	LM	HM	L	ΗM	Н	НМ
Edwards	L	LM	LM	LM	L	L	LM	LM	*	LM	LM	LM	LM	L	L	L
Effingham	LM	LM	LM	LM	LM	LM	LM	L	*	LM	LM	LM	LM	L	LM	L
Fayette	HM	Н	HM	HM	LM	LM	НМ	НМ	*	LM	LM	LM	HM	НМ	LM	HM
Ford	LM	LM	LM	LM	LM	L	LM	L	*	LM	Н	НМ	LM	LM	HM	LM
Franklin	HM	HM	Н	ΗM	LM	Н	Н	Н	*	ΗM	ΗM	LM	ΗM	ΗM	Н	Н
Fulton	LM	Н	HM	HM	LM	LM	LM	HM	*	LM	HM	LM	Н	HM	Н	HM
Gallatin	HM	Н	LM	*	L	L	HM	Н	*	Н	L	LM	HM	Н	HM	Н
Greene	HM	НМ	LM	LM	LM	Н	LM	LM	*	L	LM	ΗM	ΗM	ΗM	ΗM	ΗM
Grundy	LM	LM	L	LM	Н	LM	L	Н	*	HM	LM	LM	HM	LM	LM	LM
Hamilton	HM	LM	L	LM	LM	ΗM	LM	HM	*	Н	L	LM	LM	L	L	LM
Hancock	L	HM	HM	LM	L	HM	LM	L	*	L	HM	LM	LM	LM	LM	L

* Data not available

County																
Hardin	Н	LM	HM	LM	LM	L	Н	НМ	*	LM	Н	LM	Н	Н	HM	Н
Henderson	LM	LM	HM	LM	L	L	HM	L	*	LM	НМ	*	L	HM	Н	LM
Henry	HM	HM	LM	LM	LM	LM	LM	LM	*	HM	HM	LM	НМ	HM	HM	LM
Iroquois	HM	Н	HM	LM	HM	LM	L	HM	*	HM	НМ	LM	HM	LM	LM	HM
Jackson	HM	HM	HM	Н	Н	Н	LM	HM	*	HM	L	НМ	LM	Н	Н	Н
Jasper	LM	LM	L	L	L	LM	HM	Н	*	L	LM	L	НМ	L	L	L
Jefferson	HM	LM	Н	HM	HM	Н	Н	LM	*	Н	LM	Н	LM	HM	Н	Н
Jersey	L	LM	LM	L	HM	LM	HM	HM	*	HM	L	LM	Н	L	L	L
Jo Daviess	LM	L	L	LM	HM	L	LM	LM	*	L	LM	LM	Н	LM	LM	L
Johnson	LM	Н	LM	LM	LM	LM	LM	LM	*	L	Н	HM	L	Н	Н	LM
Kane	Н	LM	LM	HM	Н	LM	L	LM	LM	HM	LM	LM	HM	HM	HM	HM
Kankakee	HM	Н	HM	LM	Н	HM	L	LM	*	HM	LM	HM	HM	HM	HM	HM
Kendall	L	LM	L	LM	Н	LM	L	HM	LM	HM	L	LM	HM	L	LM	L
Knox	LM	HM	Н	Н	HM	LM	LM	LM	*	LM	Н	НМ	НМ	HM	HM	HM
Lake	HM	LM	LM	LM	Н	LM	LM	LM	LM	HM	L	LM	HM	LM	LM	LM
LaSalle	HM	LM	HM	LM	HM	LM	HM	HM	LM	LM	НМ	LM	HM	HM	HM	HM
Lawrence	HM	Н	Н	LM	LM	HM	LM	LM	*	LM	НМ	LM	Н	LM	HM	HM
Lee	LM	HM	L	LM	LM	LM	LM	LM	*	L	LM	LM	Н	HM	Н	LM
Livingston	HM	LM	LM	LM	HM	LM	HM	Н	*	L	LM	LM	L	LM	LM	LM
Logan	LM	L	LM	HM	LM	HM	Н	НМ	*	HM	LM	LM	L	HM	HM	LM
Macon	HM	HM	Н	Н	HM	LM	Н	HM	HM	Н	Н	HM	HM	HM	HM	Н
Macoupin	LM	LM	ΗM	LM	LM	HM	HM	НМ	*	Н	НМ	LM	LM	LM	НМ	HM
Madison	LM	HM	LM	Н	HM	HM	LM	Н	*	LM	LM	HM	LM	LM	LM	HM
Marion	Н	ΗM	Н	LM	НМ	Н	LM	Н	*	HM	LM	HM	LM	LM	HM	HM
Marshall	HM	LM	LM	HM	LM	LM	LM	LM	*	HM	HM	LM	L	LM	LM	LM
Mason	HM	HM	HM	L	HM	LM	Н	L	*	L	Н	HM	НМ	LM	HM	HM
Massac	LM	Н	Н	L	HM	LM	LM	Н	*	HM	HM	HM	LM	LM	L	HM
McDonough	ΗM	LM	HM	HM	ΗM	HM	HM	LM	*	LM	НМ	HM	LM	Н	HM	HM
McHenry	LM	LM	L	Н	Н	LM	L	HM	LM	LM	LM	LM	HM	LM	LM	LM
McLean	LM	L	L	HM	НМ	LM	LM	LM	LM	HM	LM	HM	LM	LM	LM	LM
Menard	LM	Н	HM	LM	LM	LM	LM	LM	*	Н	LM	LM	HM	LM	LM	LM
Mercer	LM	Н	HM	LM	L	LM	LM	LM	*	HM	HM	LM	HM	HM	HM	HM
Monroe	L	L	L	L	HM	LM	L	HM	*	L	НМ	LM	HM	L	L	L
Montgomery	HM	Н	HM	HM	LM	HM	HM	HM	*	HM	LM	LM	L	HM	LM	HM
Morgan	LM	LM	LM	HM	HM	LM	HM	LM	*	HM	ΗM	HM	LM	LM	HM	НМ

* Data not available.

Nateral Education powerst Child Care Cost Horsespiest National Trid Care Posting Notice Provide Posting Postin

County																
Moultrie	Н	LM	HM	HM	LM	HM	L	L	*	L	LM	L	HM	LM	LM	LM
Ogle	LM	L	LM	НМ	HM	LM	LM	HM	*	LM	LM	LM	HM	HM	LM	LM
Peoria	HM	HM	HM	HM	НМ	HM	HM	HM	LM	HM	Н	Н	HM	HM	НМ	Н
Perry	HM	HM	HM	LM	LM	LM	Н	Н	*	Н	HM	LM	LM	HM	HM	HM
Piatt	LM	L	L	LM	LM	L	LM	HM	*	HM	LM	LM	L	L	L	L
Pike	LM	HM	HM	LM	LM	LM	LM	HM	*	L	LM	LM	LM	Н	Н	HM
Pope	L	Н	LM	*	НМ	HM	LM	L	*	L	Н	*	HM	Н	Н	HM
Pulaski	Н	HM	Н	Н	HM	Н	HM	L	*	LM	HM	*	HM	Н	Н	Н
Putnam	LM	LM	HM	L	L	L	HM	Н	*	Н	L	L	Н	LM	LM	LM
Randolph	HM	LM	L	LM	LM	Н	LM	HM	*	LM						
Richland	НМ	LM	LM	LM	L	HM	Н	L	*	L	LM	HM	L	Н	Н	LM
Rock Island	HM	HM	Н	Н	HM	LM	LM	LM	Н	LM	HM	HM	HM	HM	HM	Н
Saline	HM	LM	Н	LM	LM	LM	Н	HM	*	HM	LM	HM	HM	Н	Н	HM
Sangamon	LM	HM	HM	HM	HM	LM	HM	HM	Н	HM	HM	Н	HM	HM	LM	HM
Schuyler	L	L	LM	LM	L	L	Н	L	*	Н	HM	LM	Н	HM	HM	LM
Scott	LM	LM	Н	L	LM	L	LM	HM	*	Н	HM	L	HM	HM	LM	LM
Shelby	LM	L	*	LM	LM	L	L	LM	LM	L						
St. Clair	LM	Н	HM	Н	Н	HM	LM	LM	L	HM	LM	Н	HM	HM	HM	HM
Stark	HM	Н	HM	LM	L	HM	LM	Н	*	L	Н	L	LM	HM	LM	HM
Stephenson	LM	LM	HM	HM	HM	HM	HM	LM	*	HM	Н	LM	Н	LM	LM	HM
Tazewell	LM	LM	L	LM	LM	LM	LM	HM	LM	LM	LM	HM	HM	LM	LM	LM
Union	HM	Н	LM	LM	LM	Н	Н	HM	*	L	HM	LM	LM	HM	LM	HM
Vermilion	HM	HM	Н	HM	HM	LM	HM	Н	Н	Н	LM	Н	HM	HM	HM	Н
Wabash	LM	L	L	HM	LM	Н	LM	Н	*	LM	Н	LM	HM	HM	LM	HM
Warren	Н	LM	LM	HM	LM	LM	LM	L	*	LM	HM	HM	LM	HM	Н	HM
Washington	LM	L	LM	LM	LM	Н	НМ	Н	*	L	LM	ΗM	Н	LM	HM	LM
Wayne	Н	LM	HM	HM	LM	HM	HM	L	*	LM	LM	LM	LM	L	L	LM
White	LM	Н	HM	LM	LM	HM	ΗM	L	*	HM	LM	LM	HM	LM	LM	LM
Whiteside	LM	LM	LM	HM	HM	LM	HM	LM	*	LM	LM	LM	LM	LM	HM	LM
Will	LM	LM	L	LM	Н	LM	L	HM	LM	HM	LM	LM	HM	LM	LM	LM
Williamson	LM	HM	НМ	LM	НМ	HM	Н	НМ	*	HM	Н	LM	LM	LM	LM	HM
Winnebago	Н	HM	HM	Н	Н	HM	HM	Н	Н	HM	LM	Н	HM	Н	HM	Н
Woodford	L	L	L	LM	LM	LM	LM	LM	*	LM	LM	LM	LM	L	L	L

Source: Risk and Reach analysis of individual indicator data

* Data not available.

APPENDIX 4. Risk Scores by County

County																
Adams	-0.32	-0.64	-0.44	-0.89	-0.17	0.18	0.38	-0.15	*	0.14	1.67	0.69	-2.19	0.53	0.43	-0.06
Alexander	0.36	4.20	4.16	5.64	1.09	1.70	1.87	-0.23	*	0.06	1.19	3.57	-0.73	2.39	1.84	1.94
Bond	-0.24	-0.54	1.07	-0.70	-0.40	1.59	0.00	0.10	*	-1.40	-1.12	-0.90	-1.71	-0.23	-0.41	-0.35
Boone	0.75	0.24	-0.45	0.16	1.40	-0.98	-1.33	-0.16	*	-0.78	-1.18	-0.28	1.31	1.09	0.99	0.06
Brown	-0.93	-0.86	0.43	-1.49	-1.14	3.29	-1.10	-0.18	*	0.14	1.03	-0.37	-1.52	0.64	1.50	-0.04
Bureau	0.01	0.10	0.08	0.04	0.02	-0.28	-0.52	0.12	*	1.75	0.77	-0.51	0.72	-0.10	-0.40	0.13
Calhoun	-0.51	-1.08	-0.55	*	0.09	-0.32	-1.27	0.35	*	2.00	-0.64	*	-2.55	-1.67	-0.38	-0.54
Carroll	-0.12	-0.98	-0.88	-0.35	-0.06	-0.73	-0.47	-0.29	*	-0.56	-0.03	-0.73	0.42	-1.01	-1.88	-0.55
Cass	1.55	-0.56	0.98	-0.31	-0.88	-0.74	-0.20	-1.60	*	0.20	0.42	1.41	0.18	1.56	1.91	0.28
Champaign	-0.34	-0.29	0.00	0.48	1.88	-0.43	-0.14	-0.52	-1.24	-0.22	-1.37	1.43	0.25	0.24	0.07	-0.01
Christian	-0.39	-0.15	-0.10	-0.03	-0.37	0.72	0.84	0.97	*	0.55	-0.83	-0.63	-0.32	0.50	0.09	0.06
Clark	-0.92	-0.53	-0.14	0.35	-0.15	-0.24	-0.06	-0.40	*	-0.47	-0.89	-0.64	2.22	-0.81	-0.26	-0.21
Clay	-0.08	-0.47	0.83	0.80	-1.41	0.61	-0.83	-0.88	*	-1.06	0.16	-0.75	1.25	-0.14	-0.09	-0.15
Clinton	-0.77	-1.42	-1.06	-1.17	-0.53	0.67	-0.95	-0.06	*	0.31	-1.53	-0.53	-1.20	-2.02	-1.72	-0.86
Coles	-0.04	-0.22	0.78	0.70	1.32	-0.31	1.18	-0.50	*	-0.14	-0.89	0.57	-1.80	0.18	0.72	0.11
Cook	0.39	0.36	0.23	0.67	3.13	-0.23	-1.43	0.46	1.46	0.23	-0.92	2.32	0.31	-0.09	0.11	0.47
Crawford	0.87	-1.12	-0.89	-0.63	-0.41	-0.60	1.72	-1.10	*	-0.95	-0.67	0.28	1.38	0.09	-0.00	-0.15
Cumberland	-0.67	0.81	0.19	-1.02	-0.91	0.03	0.22	-0.71	*	0.15	-1.05	-0.70	0.48	0.06	-0.11	-0.23
DeKalb	-0.54	-0.11	0.20	1.09	2.52	-0.89	-0.68	-0.02	*	-0.52	-1.28	0.41	0.11	0.10	-0.09	0.02
DeWitt	-0.98	-0.50	0.16	-0.89	-0.97	-0.58	-0.08	1.37	*	0.09	2.08	-0.79	-0.35	-1.11	-0.22	-0.20
Douglas	5.15	0.16	0.03	-0.51	-0.35	0.12	-1.29	-0.62	*	0.67	-0.03	-0.07	-0.57	0.62	0.94	0.30
DuPage	-0.72	-0.84	-1.60	-0.09	1.81	-0.70	-1.61	-0.22	-0.03	-0.27	-1.28	-0.64	-0.70	-1.41	-1.64	-0.66
Edgar	0.40	0.15	1.33	0.07	0.00	-0.19	0.84	0.03	*	0.36	-0.22	0.05	-1.08	0.46	1.15	0.24
Edwards	-1.29	-0.80	-0.65	-0.38	-1.31	-0.98	-0.44	-0.13	*	-0.11	-0.73	-0.93	-0.17	-2.02	-2.24	-0.87
Effingham	-0.97	-0.80	-0.79	-0.54	-0.92	-0.28	-0.19	-1.04	*	-0.31	-0.77	-0.33	-0.30	-1.30	-0.83	-0.67
Fayette	0.80	1.05	0.46	0.51	-0.82	-0.26	0.39	0.60	*	-0.89	-0.61	-0.48	0.05	0.06	-0.41	0.03
Ford	-0.38	-0.68	-0.02	-0.09	-0.75	-0.98	-0.34	-1.60	*	-0.02	1.89	0.31	-0.09	-0.10	0.05	-0.20
Franklin	0.38	1.00	1.19	0.86	-0.14	1.03	1.70	1.59	*	0.84	0.87	-0.56	0.18	0.30	1.03	0.74
Fulton	-0.20	1.15	0.25	0.64	-0.16	-0.77	-0.28	0.01	*	-0.32	0.93	-0.68	1.39	0.88	1.23	0.29
Gallatin	0.29	1.26	-0.38	*	-1.23	-0.98	0.34	3.87	*	2.49	-1.12	-0.45	0.74	1.92	0.40	0.55
Greene	0.98	0.57	-0.19	-0.12	-0.46	3.44	-0.30	-0.15	*	-1.05	-0.19	0.10	0.97	0.14	0.58	0.31
Grundy	-0.95	-0.80	-1.11	-0.89	1.01	-0.74	-1.47	1.10	*	0.49	-0.64	-0.71	0.33	-0.51	-0.25	-0.37
Hamilton	0.78	-0.77	-1.32	-0.44	-0.67	0.39	-0.34	0.75	*	1.81	-1.28	-0.84	-0.58	-1.51	-1.82	-0.42
Hancock	-1.07	0.10	0.24	-0.76	-1.19	0.72	-0.48	-1.60	*	-1.30	0.32	-0.76	-0.64	-0.51	-0.13	-0.50
Hardin	1.30	-0.85	0.39	-0.63	-0.33	-0.98	3.25	0.72	*	-0.61	2.02	-0.55	1.06	2.64	0.05	0.53

* Data not available.

		5 tilanguage timath
taughor mooner acost cost	nes cert ches peaks and and	e should renteether berothers
watering basened bonetry child care Horsing, houses	watteath produce waternal present leaderna	loene underse this case this case overall at

County																1
Henderson	-0.65	-0.63	0.65	-0.25	-1.35	-0.98	0.42	-1.60	*	-0.05	0.99	*	-2.27	0.81	1.97	-0.23
Henry	0.01	0.13	-0.23	-0.25	-0.74	-0.13	-0.19	-0.82	*	0.59	0.51	-0.47	0.81	0.54	0.12	-0.01
Iroquois	0.11	1.58	0.84	-0.03	0.37	-0.34	-1.01	0.76	*	0.48	0.23	-0.48	0.05	-0.83	-0.16	0.11
Jackson	0.20	0.88	0.72	1.41	2.48	1.96	-0.01	0.37	*	0.07	-1.18	0.93	-0.14	1.32	1.09	0.72
Jasper	-0.94	-0.99	-1.99	-1.53	-1.01	-0.19	0.02	1.43	*	-1.69	-0.77	-1.08	0.08	-1.46	-1.68	-0.84
Jefferson	0.13	-0.08	1.27	0.67	0.53	4.44	2.72	-0.09	*	2.12	-0.45	2.12	-0.47	0.47	1.05	1.03
Jersey	-1.10	-0.95	-0.61	-1.17	0.38	-0.36	0.53	0.13	*	0.03	-1.15	-0.28	1.66	-2.28	-2.56	-0.55
Jo Daviess	-0.94	-1.34	-1.41	-0.92	0.21	-0.98	-0.02	-0.73	*	-1.37	-0.38	-0.32	1.33	-0.24	-0.41	-0.54
Johnson	-0.27	1.04	-0.54	-0.54	-0.49	-0.40	-0.49	-0.85	*	-1.51	2.31	0.29	-1.52	1.19	1.09	-0.05
Kane	1.12	-0.14	-0.64	0.96	2.16	-0.67	-1.29	-0.44	-0.89	0.31	-0.86	-0.11	0.85	0.48	0.14	0.06
Kankakee	0.01	1.10	0.16	-0.16	1.33	0.05	-1.09	-0.04	*	0.77	-0.35	0.27	0.30	0.38	0.30	0.22
Kendall	-1.26	-0.93	-1.90	-0.28	1.68	-0.79	-1.84	0.48	-0.74	0.30	-1.28	-0.65	0.58	-1.82	-0.97	-0.63
Knox	-0.03	0.99	1.15	1.50	0.05	-0.26	-0.08	-0.85	*	-0.70	1.54	0.50	0.21	0.01	0.47	0.32
Lake	0.16	-0.56	-1.00	-0.35	2.00	-0.68	-0.92	-0.35	-0.21	0.03	-1.31	-0.34	0.44	-0.71	-0.73	-0.30
LaSalle	0.21	-0.06	0.15	-0.44	0.67	-0.39	0.16	0.04	-0.28	-0.17	0.23	-0.46	0.56	0.05	0.86	0.08
Lawrence	0.25	2.54	1.10	-0.57	-0.70	0.09	-0.14	-0.43	*	-0.44	0.03	-0.58	1.29	-0.01	0.25	0.19
Lee	-0.67	0.49	-1.26	-0.06	-0.29	-0.73	-0.89	-0.48	*	-1.81	-0.13	-0.15	1.61	0.66	1.11	-0.19
Livingston	0.03	-0.35	-0.60	-0.35	0.07	-0.33	0.06	1.00	*	-1.35	-0.16	-0.31	-1.41	-0.02	-0.18	-0.28
Logan	-0.02	-1.22	-0.54	0.29	-0.49	0.23	1.05	0.35	*	0.80	-0.19	-0.32	-1.09	0.48	0.18	-0.03
Macon	0.65	0.29	1.88	1.72	0.30	-0.36	2.08	0.10	0.30	1.33	1.51	0.95	0.67	0.76	0.96	0.88
Macoupin	-0.30	-0.05	0.06	-0.44	-0.33	0.58	0.58	0.49	*	1.09	0.03	-0.21	-0.28	-0.11	0.27	0.10
Madison	-0.45	0.56	-0.33	1.53	0.54	0.15	-0.20	1.02	*	-0.46	-0.86	0.29	-0.43	-0.23	-0.12	0.07
Marion	1.57	0.46	1.31	-0.22	0.24	1.28	-0.23	1.17	*	0.06	-0.06	0.84	-0.54	-0.23	0.12	0.41
Marshall	0.78	-0.06	-0.31	0.35	-0.72	-0.56	-0.61	-0.80	*	0.87	0.87	-0.40	-2.24	-0.80	-0.83	-0.32
Mason	0.32	0.14	0.36	-1.68	0.32	-0.56	2.24	-1.60	*	-1.69	1.92	0.35	0.78	-0.21	0.06	0.05
Massac	-0.54	1.78	1.14	-1.30	0.83	-0.63	-0.34	1.66	*	0.46	0.48	0.47	-0.40	-0.16	-2.30	0.08
McDonough	0.69	-0.18	0.56	0.26	0.39	0.16	0.30	-0.38	*	-0.83	0.74	0.20	-0.01	1.01	0.86	0.27
McHenry	-0.49	-0.48	-1.27	1.95	1.81	-0.70	-1.31	0.17	-0.01	-0.03	-0.99	-0.59	0.27	-0.76	-0.76	-0.21
McLean	-0.94	-1.10	-1.12	0.42	0.51	-0.62	-0.92	-0.31	-0.27	0.48	-0.61	0.35	-0.30	-0.51	-0.41	-0.36
Menard	-0.72	1.92	0.60	-0.47	-0.38	-0.78	-0.97	-0.83	*	1.26	-0.48	-0.66	0.09	-0.30	-0.02	-0.12
Mercer	-0.22	2.12	0.86	-0.70	-1.30	-0.52	-0.04	-0.39	*	0.73	0.96	-0.71	0.82	0.82	0.73	0.23
Monroe	-1.66	-1.24	-1.67	-1.24	0.30	-0.42	-1.42	0.70	*	-1.96	0.10	-0.96	0.24	-2.56	-3.31	-1.08
Montgomery	0.11	1.02	0.11	0.67	-0.31	0.92	0.15	0.72	*	0.48	-0.70	-0.61	-1.81	0.07	-0.05	0.05
Morgan	-0.50	-0.27	-0.58	0.07	0.30	-0.60	0.86	-0.21	*	0.48	0.80	0.08	-0.13	-0.38	0.34	0.02
Moultrie	3.47	-0.81	0.03	0.04	-0.97	0.42	-1.08	-1.60	*	-2.18	-0.32	-1.04	0.03	-0.70	-0.67	-0.39

County																
Ogle	-0.83	-1.02	-0.73	0.42	0.48	-0.92	-0.73	0.82	*	-0.61	-0.73	-0.86	0.51	0.02	-0.65	-0.34
Peoria	0.15	0.71	0.65	0.39	0.70	0.23	0.59	0.16	-0.52	0.07	1.54	1.74	0.40	0.11	0.20	0.48
Perry	0.57	0.87	0.03	-0.22	-0.23	-0.55	1.06	1.99	*	1.27	0.32	-0.35	-0.97	0.29	0.96	0.36
Piatt	-0.98	-1.38	-2.11	-0.67	-0.96	-0.98	-1.00	0.75	*	0.64	-0.13	-0.34	-1.83	-2.51	-1.03	-0.89
Pike	-0.31	0.02	0.17	-0.35	-0.61	-0.38	-0.13	0.82	*	-1.01	-0.19	-0.64	-0.48	1.41	1.70	0.00
Pope	-1.09	1.90	-0.34	*	0.19	0.06	-0.64	-1.60	*	-1.12	2.18	*	0.66	2.42	1.23	0.32
Pulaski	2.33	0.79	1.05	2.65	0.29	2.15	0.21	-1.60	*	-0.76	0.07	*	0.80	1.80	1.97	0.90
Putnam	-0.57	-0.13	0.92	-1.24	-1.19	-0.98	0.43	1.78	*	1.75	-1.82	-1.01	2.63	-0.27	-0.44	-0.01
Randolph	0.37	-0.34	-1.14	-0.79	-0.86	2.00	-0.07	0.75	*	-0.05	-0.70	-0.79	-0.53	-0.23	-0.07	-0.17
Richland	0.05	-0.75	-0.81	-0.22	-1.14	0.73	1.67	-1.60	*	-1.39	-0.16	0.92	-1.21	1.53	1.23	-0.08
Rock Island	0.78	0.57	1.12	1.12	0.68	-0.78	-0.13	-0.48	1.08	-0.24	0.77	0.71	0.85	0.93	0.71	0.51
Saline	0.70	-0.64	1.52	-0.57	-0.05	-0.36	1.25	0.37	*	0.72	-0.38	0.78	0.10	1.11	1.50	0.43
Sangamon	-0.16	0.12	0.73	0.07	0.55	-0.34	0.19	0.01	1.12	0.95	0.26	2.85	0.44	0.11	-0.12	0.45
Schuyler	-1.54	-1.39	-0.80	-0.98	-1.43	-0.98	1.31	-1.60	*	1.56	0.87	-0.34	1.21	0.29	0.36	-0.25
Scott	-0.57	-0.94	1.39	-1.05	-0.76	-0.98	-0.11	0.27	*	2.62	0.48	-1.08	0.62	0.27	-0.78	-0.04
Shelby	-0.69	-0.08	-0.91	-0.76	-0.92	-0.64	-0.38	-1.16	*	-0.09	-0.32	-1.04	-1.15	-0.63	-0.85	-0.69
St. Clair	-0.05	1.02	0.90	2.20	1.49	0.06	-0.47	-0.10	-1.88	0.92	-0.43	1.91	0.12	0.17	0.15	0.40
Stark	0.55	2.05	0.87	-0.31	-1.71	0.84	-0.76	1.72	*	-1.62	2.15	-1.08	-0.80	0.33	-0.18	0.15
Stephenson	-0.18	-0.31	0.69	0.67	0.91	0.24	0.49	-0.76	*	0.32	2.56	-0.48	1.45	-0.02	-0.31	0.38
Tazewell	-0.77	-0.65	-1.51	-0.12	-0.57	-0.62	-0.21	0.12	-0.71	-0.36	-0.80	0.31	0.50	-0.71	-0.91	-0.47
Union	0.87	1.13	-0.80	-0.86	-0.87	1.29	2.53	0.07	*	-1.65	0.00	-0.13	-0.75	0.31	-0.14	0.07
Vermilion	1.00	0.98	1.74	0.67	0.09	-0.05	0.99	1.20	2.06	1.67	-0.89	3.02	0.53	0.95	0.89	0.99
Wabash	-0.70	-1.43	-1.01	0.51	-0.21	2.15	-0.27	1.75	*	-0.15	1.28	-0.41	0.86	0.59	-0.77	0.16
Warren	2.69	-0.66	-0.32	0.55	-0.62	-0.56	-0.16	-1.60	*	-0.58	0.67	0.10	-0.88	0.48	1.03	0.01
Washington	-0.29	-1.39	-0.65	-0.76	-0.84	1.09	0.30	1.10	*	-1.48	-0.25	0.04	1.09	-0.47	0.35	-0.16
Wayne	1.09	-0.96	0.76	0.10	-0.92	0.41	0.04	-1.02	*	-0.40	-0.70	-0.42	-0.21	-1.38	-1.19	-0.34
White	-0.76	1.12	0.68	-0.25	-0.94	0.00	0.88	-1.60	*	0.99	-0.32	-0.05	0.48	-0.01	-0.41	-0.01
Whiteside	-0.32	-0.12	-0.88	0.61	0.01	-0.42	0.05	-0.92	*	-0.76	-0.06	-0.06	-0.89	-0.28	0.25	-0.27
Will	-0.39	-0.35	-1.23	-0.54	1.80	-0.52	-1.53	0.25	-0.48	0.19	-0.99	-0.28	0.89	-0.33	-0.52	-0.27
Williamson	-0.42	0.34	0.87	-0.16	0.02	0.28	1.78	0.56	*	0.77	1.57	-0.46	-0.68	-0.44	-0.86	0.23
Winnebago	1.03	0.24	0.99	1.09	1.36	0.61	0.73	2.06	1.24	0.24	-0.19	4.04	0.39	1.01	0.96	1.05
Woodford	-1.26	-1.05	-1.27	-0.19	-0.61	-0.70	-0.94	-0.11	*	-0.19	-0.80	-0.82	-0.58	-1.46	-1.29	-0.80

Source: Risk and Reach analysis of individual indicator data * Data not available.

* Data not available.

Appendix

APPENDIX 5. Reach Indicator Data by County

Income hash and care and the particle prevention of the prevention

County	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	Gap
Adams	14.1	25.3	15.2	89.6	17.4	87.2	55.5	57.3	25.4	9.8	6.1	**	3.7	9.1	13.0	5.2	547
Alexander	41.0	15.4	60.1	61.8	*	74.7	51.0	58.5	19.8	*	10.1	**	3.6	4.2	0.0	15.7	34
Bond	9.4	10.1	18.3	49.5	0.0	84.0	57.6	55.8	20.3	*	12.7	**	4.5	12.3	0.0	6.0	129
Boone	0.6	23.5	22.5	61.5	7.1	85.4	54.4	59.8	21.3	5.4	0.6	**	4.4	9.6	0.0	0.0	581
Brown	0.0	7.7	24.0	66.0	*	89.7	37.6	60.7	16.8	*	19.9	**	*	14.6	0.0	15.1	-32
Bureau	1.0	8.7	14.5	81.6	0.0	86.2	46.9	62.6	15.1	6.9	1.7	**	4.3	9.0	79.5	2.7	56
Calhoun	6.7	*	13.7	77.7	*	72.9	8.5	65.4	7.3	*	0.0	**	*	10.3	0.0	0.0	42
Carroll	0.0	12.2	9.0	63.6	*	84.8	72.5	57.5	25.9	5.2	9.6	**	*	11.0	0.0	12.1	14
Cass	13.3	11.2	4.9	57.9	0.0	78.7	63.2	65.0	26.6	8.4	8.7	**	3.1	6.6	0.0	14.9	63
Champaign	15.6	42.6	8.5	88.4	23.5	81.7	51.4	64.2	12.6	6.0	4.6	**	3.3	5.9	5.8	4.0	1,634
Christian	11.6	17.4	19.3	100*	36.8	86.6	60.5	50.2	23.6	7.3	6.2	**	5.0	8.4	0.0	8.7	-13
Clark	12.0	4.8	10.6	60.4	42.9	82.8	36.8	59.6	20.7	26.0	0.0	**	2.3	21.4	0.0	0.0	118
Clay	12.6	12.9	26.4	61.7	33.3	89.0	65.7	84.7	24.4	*	26.4	**	5.9	9.3	0.0	25.9	79
Clinton	17.7	20.3	14.6	75.9	0.0	88.4	44.2	70.8	12.6	4.0	3.3	**	3.0	14.5	0.0	2.4	113
Coles	32.2	16.9	12.3	67.7	26.3	84.1	41.2	57.7	25.0	7.0	0.0	**	7.4	13.3	0.0	0.0	664
Cook	26.1	31.6	19.4	80.0	7.2	66.5	60.3	56.3	28.1	5.3	6.2	**	5.1	5.8	14.0	7.3	38,706
Crawford	12.0	14.6	1.6	90.8	0.0	85.6	74.0	74.6	17.3	8.9	6.3	**	5.5	17.6	23.1	8.3	-163
Cumberland	6.1	6.1	16.5	49.3	33.3	88.0	35.0	63.9	17.6	*	3.4	**	4.9	18.0	0.0	0.0	32
DeKalb	14.9	29.1	14.6	79.4	10.0	80.1	57.7	65.0	16.4	4.3	3.0	**	5.0	8.4	35.5	2.6	1,078
DeWitt	3.1	12.0	22.5	65.6	0.0	83.7	44.9	64.5	17.0	11.7	1.2	**	2.6	11.6	0.0	0.0	73
Douglas	5.3	9.5	0.7	40.9	0.0	72.8	28.4	63.8	13.3	*	0.2	**	4.9	13.8	0.0	0.0	329
DuPage	13.5	21.8	12.0	75.7	13.0	80.1	68.1	58.0	9.5	8.8	4.4	**	4.0	8.8	45.6	4.0	5,462
Edgar	11.1	8.1	16.4	53.5	33.3	84.2	40.8	77.5	25.0	*	5.5	**	4.3	14.6	0.0	9.4	167
Edwards	11.3	11.1	23.9	91.8	0.0	84.5	45.9	78.4	17.1	10.3	14.9	**	4.4	15.2	0.0	0.0	36
Effingham	4.9	20.7	25.6	74.7	21.4	92.0	57.5	64.7	15.4	12.5	0.1	**	7.1	11.1	0.0	0.0	386
Fayette	29.2	12.7	3.5	71.6	23.1	81.5	55.1	82.8	20.9	6.3	9.7	**	4.4	6.4	0.0	4.5	218
Ford	2.0	13.1	14.3	44.7	0.0	84.3	57.2	75.8	13.9	8.8	3.0	**	*	9.4	0.0	0.0	132
Franklin	28.0	14.5	24.6	84.9	22.7	82.6	48.1	61.5	17.3	9.2	3.5	**	4.6	9.9	0.0	4.8	248
Fulton	21.6	12.0	28.5	74.5	7.7	88.4	45.1	80.0	16.6	6.7	2.3	**	2.6	9.4	0.0	3.7	162
Gallatin	0.0	*	28.9	58.4	20.0	87.5	21.7	74.4	26.3	7.6	6.1	**	6.9	9.7	0.0	0.0	102
Greene	13.9	7.7	19.7	87.7	14.3	72.4	53.8	67.5	22.9	9.7	9.1	**	5.5	8.0	0.0	10.3	59
Grundy	4.1	16.0	11.2	65.3	20.0	82.4	35.6	63.4	11.3	5.3	1.1	**	4.7	15.0	50.2	1.9	525
Hamilton	15.4	26.7	15.3	100*	0.0	84.3	52.7	65.8	17.3	*	38.6	**	*	8.6	3.1	32.7	45

* Data not available.

** Data only available by zip code.

County	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	Gap
Hancock	4.0	8.9	5.4	48.5	0.0	88.2	44.4	65.9	17.3	19.0	3.2	**	*	6.0	0.0	4.5	94
Hardin	2.9	28.6	56.8	100*	*	93.9	100*	57.1	17.9	*	1.5	**	*	22.9	0.0	0.0	-3
Henderson	50.0	8.6	9.1	59.7	12.5	90.1	100*	63.2	14.2	*	7.4	**	*	6.2	*	10.0	7
Henry	32.0	18.1	22.1	96.2	15.4	82.3	64.1	64.1	19.6	6.1	6.9	**	2.3	11.3	0.0	10.0	137
Iroquois	6.2	11.4	1.4	61.0	0.0	79.7	33.1	53.6	14.3	6.4	3.6	**	4.3	7.8	0.0	0.0	258
Jackson	29.0	25.2	15.7	99.6	41.2	84.2	56.5	61.8	24.0	4.7	9.7	**	4.1	8.5	7.0	10.5	142
Jasper	0.0	21.0	8.3	100*	40.0	95.6	100*	67.0	11.0	6.1	0.0	**	4.6	11.1	9.1	0.0	-70
Jefferson	24.2	21.5	23.7	82.4	20.0	85.2	100*	69.5	16.1	7.3	5.7	**	3.3	8.9	16.1	4.7	8
Jersey	11.0	12.7	28.8	100*	16.7	80.5	55.0	71.1	26.1	8.3	6.6	**	7.1	8.8	0.0	9.9	105
Jo Daviess	25.5	22.4	10.6	79.3	50.0	90.0	86.1	58.3	15.1	4.8	18.9	**	2.3	11.2	0.0	28.5	-84
Johnson	2.3	14.7	28.1	79.0	20.0	84.2	76.7	51.5	21.0	7.9	0.0	**	3.6	7.1	0.0	0.0	-124
Kane	17.1	18.2	13.0	87.3	17.3	71.8	86.1	65.3	23.0	5.2	4.3	**	4.2	10.2	45.1	4.1	5,360
Kankakee	19.8	28.4	17.6	95.4	10.0	75.5	59.3	51.2	23.3	4.0	3.9	**	3.3	8.3	7.1	6.0	1,177
Kendall	4.3	24.0	10.9	64.7	6.7	82.4	44.7	49.5	6.1	5.7	0.2	**	3.7	9.7	27.1	0.0	807
Knox	35.6	15.4	19.8	85.7	13.0	81.2	52.4	63.1	23.2	6.2	2.5	**	2.1	7.8	0.0	3.5	221
Lake	14.6	30.8	19.6	69.9	18.3	79.0	77.2	64.0	13.7	4.5	3.1	**	3.4	8.3	10.4	3.4	6,469
LaSalle	10.3	10.8	17.7	86.0	0.0	87.4	59.1	64.4	18.3	5.3	0.8	**	3.2	10.2	18.5	1.1	979
Lawrence	6.3	6.5	19.3	54.7	0.0	84.9	46.1	52.4	21.3	*	0.0	**	3.8	9.4	0.0	0.0	87
Lee	14.8	26.3	15.5	76.4	0.0	86.8	66.1	73.5	6.9	6.1	6.8	**	4.2	7.2	23.4	9.7	339
Livingston	19.8	10.1	14.8	79.8	25.0	80.2	48.3	65.2	18.9	10.1	6.8	**	5.2	15.8	0.0	0.0	44
Logan	4.9	16.9	15.1	100*	24.0	93.4	56.4	54.3	18.3	9.6	4.8	**	6.0	7.1	22.7	6.0	221
Macon	26.8	33.6	29.5	92.2	34.3	79.6	57.3	78.6	28.2	7.4	10.5	**	4.7	9.4	0.5	11.4	1,149
Macoupin	13.5	10.8	10.9	75.6	13.6	83.2	46.5	61.9	19.9	8.6	6.3	**	3.6	12.8	0.0	1.7	39
Madison	21.9	23.3	12.4	86.6	18.1	79.1	66.1	71.3	18.9	6.8	5.4	**	4.2	9.1	6.9	5.4	1,742
Marion	42.1	21.9	23.0	98.3	9.4	86.3	69.5	66.1	21.0	7.8	5.6	**	7.4	14.8	0.0	0.0	357
Marshall	6.3	4.6	3.7	66.2	0.0	89.7	50.0	68.4	27.2	8.7	0.0	**	3.5	6.1	0.0	0.0	21
Mason	3.9	6.8	15.0	74.4	0.0	89.7	66.8	67.7	23.2	9.5	6.1	**	4.2	17.3	0.0	9.9	38
Massac	19.8	16.0	26.0	100*	0.0	81.9	69.7	60.3	11.4	6.1	0.0	**	3.4	6.4	0.0	0.0	121
McDonough	18.4	18.7	19.3	81.9	20.0	81.3	58.2	64.3	19.4	6.5	10.1	**	2.7	6.6	12.7	13.5	-19
McHenry	3.6	23.8	11.1	67.7	6.7	81.6	73.3	51.3	7.7	6.3	1.3	**	5.0	9.3	33.7	1.1	1,590
McLean	22.3	29.1	12.4	85.0	10.2	76.4	54.0	52.1	20.9	6.8	3.0	**	4.3	9.3	26.3	1.7	1,434
Menard	1.1	15.4	27.4	43.4	0.0	90.2	10.3	48.1	9.9	11.6	2.5	**	2.7	21.2	0.0	0.0	69
Mercer	9.6	10.1	8.9	57.8	0.0	87.6	45.2	73.8	19.9	5.7	2.8	**	3.1	4.0	0.0	4.8	136
Monroe	25.0	35.4	0.1	54.2	0.0	86.9	45.1	52.6	13.1	8.6	0.0	**	2.2	8.7	23.3	0.0	124
Montgomery	3.8	9.3	16.1	74.6	22.2	87.4	66.9	61.7	22.0	7.4	5.2	**	5.0	11.3	15.7	7.9	27

* Data not available.

** Data only available by zip code.

County	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	Gap
Morgan	27.6	29.9	24.2	100*	8.3	79.4	66.3	49.2	24.6	9.9	13.8	**	4.1	10.3	19.1	19.8	76
Moultrie	2.3	7.8	2.8	33.3	22.2	72.7	21.7	67.3	12.9	*	2.6	**	5.4	6.4	0.0	3.7	218
Ogle	12.2	21.8	13.0	70.1	4.8	86.7	51.3	69.9	11.6	7.7	0.1	**	5.6	10.7	15.0	0.0	555
Peoria	57.3	30.2	25.7	97.2	20.0	78.0	60.0	68.4	11.7	6.6	4.9	**	3.9	10.4	36.6	4.6	1,525
Perry	13.2	17.0	25.8	85.1	0.0	86.0	79.2	73.8	20.8	7.2	6.0	**	3.2	7.3	24.6	3.8	108
Piatt	7.7	20.6	9.8	77.9	16.7	86.9	52.9	75.1	12.0	*	2.3	**	3.3	7.4	0.0	0.0	101
Pike	12.2	7.2	21.3	59.4	0.0	83.1	29.1	78.4	20.7	8.3	3.2	**	2.5	12.1	0.0	4.5	23
Pope	0.0	*	54.0	100*	0.0	88.5	17.8	85.7	17.8	*	0.0	**	*	10.5	0.0	0.0	-22
Pulaski	88.9	14.9	30.4	85.0	0.0	80.5	43.4	55.4	16.3	5.1	0.0	**	*	8.4	0.0	0.0	47
Putnam	0.0	*	0.0	67.3	0.0	90.0	46.3	81.4	19.6	7.5	0.9	**	*	12.2	*	0.0	-30
Randolph	34.2	17.6	14.5	100*	20.0	76.1	66.4	75.4	15.9	7.1	2.8	**	1.6	13.8	0.0	3.7	-36
Richland	26.2	18.8	15.5	97.7	0.0	85.5	93.7	82.5	15.7	7.5	21.0	**	7.1	12.5	59.3	26.2	-50
Rock Island	24.2	20.7	32.7	76.3	12.0	85.8	73.5	75.2	22.9	5.0	3.4	**	2.6	8.3	46.4	1.9	1,402
Saline	5.3	24.5	25.3	100*	33.3	86.5	62.3	58.5	25.2	10.5	6.5	**	7.5	12.1	10.3	0.0	58
Sangamon	50.7	39.3	19.7	89.0	18.2	82.8	68.8	49.7	16.8	7.5	3.6	**	4.4	11.8	4.3	4.2	1,286
Schuyler	7.7	38.6	0.3	87.6	0.0	93.1	92.0	72.6	19.0	*	0.0	**	*	5.1	0.0	0.0	-15
Scott	0.0	15.2	26.5	49.5	*	81.3	79.2	72.2	37.8	6.2	7.7	**	*	7.6	0.0	0.0	2
Shelby	9.0	8.9	13.9	68.6	71.4	85.8	66.1	73.5	17.0	*	0.0	**	5.3	7.3	0.0	0.0	141
St. Clair	40.5	29.7	22.5	80.2	18.2	65.2	58.2	36.7	23.1	4.7	4.1	**	2.9	7.5	11.2	3.3	2,452
Stark	3.5	*	7.2	52.9	0.0	84.4	34.0	83.3	31.0	6.0	0.0	**	*	17.1	0.0	0.0	18
Stephenson	74.6	28.8	15.8	82.5	20.0	89.8	58.2	69.0	32.4	3.9	10.5	**	4.4	4.8	22.7	8.8	654
Tazewell	19.9	22.9	19.4	100*	2.7	81.9	61.2	68.8	12.6	8.9	3.7	**	4.6	9.8	34.2	5.1	863
Union	58.2	10.7	34.3	100*	12.5	88.0	91.9	62.7	16.2	10.3	0.0	**	4.0	14.3	0.0	0.0	-92
Vermilion	23.6	25.4	24.8	87.9	12.8	82.0	61.5	54.3	20.1	5.6	8.0	**	3.4	8.3	0.0	1.9	1,076
Wabash	3.0	8.0	16.8	99.7	0.0	90.1	93.5	77.6	20.4	14.8	7.1	**	6.6	14.7	0.0	9.8	45
Warren	86.0	9.8	26.1	63.7	25.0	79.5	61.0	60.3	22.3	6.3	0.0	**	1.8	7.6	0.0	0.0	86
Washington	24.1	11.5	1.0	82.9	0.0	87.2	100*	61.3	13.9	9.5	0.0	**	6.1	12.9	0.0	0.0	53
Wayne	18.5	6.4	22.0	62.2	4.8	82.0	100*	84.7	23.0	13.0	11.6	**	3.5	10.7	*	7.5	91
White	0.9	14.6	13.3	80.5	0.0	85.6	66.0	64.2	18.5	8.6	5.9	**	5.3	13.0	0.0	0.0	60
Whiteside	18.8	18.3	16.8	75.3	17.6	86.3	65.1	65.9	22.7	7.1	7.1	**	3.0	11.0	3.8	8.1	575
Will	25.1	30.5	13.5	97.3	11.5	74.4	65.8	53.6	16.8	4.1	11.1	**	4.8	7.8	20.7	16.5	5,682
Williamson	18.0	28.7	27.5	100*	7.4	86.6	71.9	61.8	19.8	7.2	1.9	**	4.3	10.0	30.9	2.1	240
Winnebago	24.2	33.4	19.7	97.3	23.4	83.4	67.7	59.1	19.4	5.2	4.5	**	4.3	7.8	5.8	3.8	3,075
Woodford	5.3	12.1	25.0	42.5	0.0	81.4	37.6	67.4	12.9	10.2	3.9	**	3.7	7.1	0.0	5.3	488

* Data not available.

** Data only available by zip code.

APPENDIX 6. Reach Levels by County

County																	
Adams	LM	НМ	LM	Н	НМ	НМ	LM	LM	Н	НМ	НМ	**	LM	LM	НМ	HM	НM
Alexander	Н	LM	Н	L	*	L	LM	LM	HM	*	HM	**	LM	L	L	Н	HM
Bond	LM	LM	НМ	L	L	ΗМ	LM	LM	НМ	*	Н	**	НМ	НМ	L	НМ	ΗМ
Boone	LM	HM	HM	LM	LM	HM	LM	LM	HM	LM	LM	**	HM	LM	L	L	HM
Brown	L	L	НМ	LM	*	Н	LM	LM	LM	*	Н	**	*	Н	L	Н	Н
Bureau	LM	L	LM	HM	L	HM	LM	LM	LM	LM	LM	**	HM	LM	Н	LM	НМ
Calhoun	LM	*	LM	LM	*	L	LM	HM	L	*	L	**	*	ΗМ	L	L	HM
Carroll	L	LM	LM	LM	*	НМ	HM	LM	Н	LM	HM	**	*	HM	L	Н	HM
Cass	LM	LM	L	LM	L	LM	LM	LM	Н	НМ	НМ	**	LM	L	L	Н	HM
Champaign	LM	Н	LM	HM	НМ	LM	LM	LM	L	LM	LM	**	LM	L	LM	LM	LM
Christian	LM	LM	НМ	Н	Н	НМ	HM	L	HM	LM	НМ	**	НМ	LM	L	HM	Н
Clark	LM	L	LM	L	Н	LM	L	LM	HM	Н	L	**	L	Н	L	L	HM
Clay	LM	LM	НМ	LM	Н	НМ	Н	Н	Н	*	Н	**	Н	LM	L	Н	HM
Clinton	HM	HM	LM	HM	L	НМ	LM	HM	L	L	LM	**	LM	Н	L	LM	HM
Coles	HM	LM	LM	LM	НМ	НМ	LM	LM	Н	LM	L	**	Н	ΗМ	L	L	HM
Cook	HM	Н	HM	LM	LM	L	LM	LM	Н	LM	HM	**	HM	L	НМ	HM	L
Crawford	LM	LM	L	Н	L	НМ	Н	Н	LM	НМ	НМ	**	НМ	Н	НМ	HM	Н
Cumberland	LM	L	LM	L	Н	НМ	LM	LM	LM	*	LM	**	HM	Н	L	L	HM
DeKalb	LM	Н	LM	LM	LM	LM	LM	HM	LM	L	LM	**	НМ	LM	Н	LM	LM
DeWitt	LM	LM	HM	LM	L	НМ	LM	LM	LM	Н	LM	**	L	HM	L	L	НМ
Douglas	LM	LM	L	L	L	L	L	LM	LM	*	LM	**	НМ	HM	L	L	НМ
DuPage	LM	HM	LM	LM	LM	LM	HM	LM	L	HM	LM	**	LM	LM	Н	LM	L
Edgar	LM	L	LM	L	Н	НМ	L	Н	Н	*	НМ	**	НМ	Н	L	HM	НМ
Edwards	LM	LM	HM	Н	L	HM	LM	Н	LM	HM	Н	**	HM	Н	L	L	HM
Effingham	LM	HM	НМ	LM	HM	Н	НМ	LM	LM	Н	LM	**	Н	ΗМ	L	L	HM
Fayette	HM	LM	L	LM	HM	LM	Н	Н	HM	LM	HM	**	HM	L	L	LM	HM
Ford	LM	LM	LM	L	L	НМ	LM	Н	LM	HM	LM	**	*	LM	L	L	НМ
Franklin	HM	LM	HM	HM	HM	LM	LM	LM	LM	HM	LM	**	HM	LM	L	LM	HM
Fulton	НМ	LM	Н	LM	LM	НМ	LM	Н	LM	LM	LM	**	L	LM	L	LM	НМ
Gallatin	L	*	Н	L	HM	HM	L	HM	Н	LM	HM	**	Н	LM	L	L	HM
Greene	LM	L	НМ	НМ	НМ	L	LM	НМ	НМ	НМ	НМ	**	НМ	LM	L	HM	HM
Grundy	LM	LM	LM	LM	HM	LM	L	LM	L	LM	LM	**	HM	Н	Н	LM	HM
Hamilton	LM	НМ	LM	Н	L	НМ	Н	НМ	LM	*	Н	**	*	LM	LM	Н	HM
Hancock	LM	L	L	L	L	НМ	LM	HM	LM	Н	LM	**	*	L	L	LM	HM

* Data not available.

** Data only available by zip code.

BityChildCare A case care und worthon read to sing to the the set of ising Assistant od Assistance come Assistance subsiti

County LM LM LM * Hardin Н LM * ** Н L Н Н Н * Н Н L L LM H LM LM K * HM ** L * Henderson HM HM h l lm Henry ΗМ LM LM LM ΗМ LM ΗМ ΗМ ΗМ ΗМ HM Н ΗМ HМ 1 L Iroquois LM LM ΙM IM IM LM LM ΗМ LM ΗМ ΙM 1 1 1 Jackson ΗМ ΗМ ΙM ΗМ ΗМ LM ΗМ LM ΗМ ** LM LM LM ΗМ ΗМ Н Н Jasper L HM LM HМ НM LM L H LM HМ L Jefferson ΗМ LM LM HМ ΗМ LM ΗМ LM LM ΗМ ** LM HМ ΗM ΗM HM ΗM Jersey LM LM LM ΗМ ΗМ ** Н L ΗМ HМ Jo Daviess HМ НM LM ΗМ LM LM LM ** L ΗМ Н Н Johnson LM LM ΗМ ** LM LM Н HM LM HМ 1 Kane LM HM LM LM ** LM LM LM LM ΗМ ΗМ ΗМ HМ Н 1 Н Kankakee LM ** HM H LM LM LM LM LM LM ΗМ L ΗМ LM Kendall LM HM LM LM LM LM ** LM LM LM LM ΙM Н ΗМ L 1 Knox H LM LM ΗM LM LM ** L LM L LM ΗМ ΗМ ΗМ LM LM LM Lake LM LM LM ** LM Н ΗМ LM ΗМ LM НM L LM LM НM LM L LaSalle LM LM LM LM LM ** LM LM НМ LM LM ΗМ НM LM LM LM Lawrence LM 1 ΗМ 1 L HМ LM L ΗМ * L ** LM LM L L ΗМ Lee LM HM LM HМ ΗМ HМ LM HМ ** HM LM ΗM НM ΗМ LM Livingston ΗМ LM LM ΗМ LM LM HМ ΗМ ΗМ HМ ** HМ Н L L ΗМ ΗМ Logan LM LM НМ НM LM HМ Н LM LM НМ LM ** Н LM ΗM Н L ** L McDonough HМ НM ΗМ ΗM HМ LM LM LM НM LM НM L НM Н Н McHenry LM HM LM L LM LM ** HM LM H LM LM LM LM LM HМ - I McLean ** ΗМ Н LM ΗМ LM LM HМ LM LM ΗМ LM Н LM LM L L Macon HM H ΗМ LM ΗМ ** ΗМ LM LM ΗМ LM Н LM LM Н н Н Macoupin LM LM LM LM НМ LM LM LM ΗM ΗМ ΗМ ** LM HМ L LM ΗМ Madison HM HM ** LM LM LM HM LM LM HМ HМ LM ΗМ ΗM ΗM LM ΗМ Marion Н ΗМ ΗМ ΗМ HМ ΗМ ΗМ ΗМ ** Н Н L L ΗМ HM Н LM Marshall LM LM LM ΗM ΗM ** LM ΗM Н LM LM Mason LM ΗМ ΗМ ΗМ ΗМ ** HМ ΗМ L LM Н Н Н L L HM LM Massac LM LM ** LM НM ΗМ LM L 1 1 1 Menard LM LM LM ** ΗМ НМ Н 1 1 Н L Н 1 1 Mercer LM LM LM HМ LM ΗМ HМ LM LM LM LM HМ Monroe HМ LM НM LM ΗМ ** LM HМ ΗМ Н L 1 L L

LM L LM LM HM HM HM LM HM LM **

HM HM HM HM

HМ

* Data not available.

Montgomery

** Data only available by zip code.

County																	
Morgan	НМ	Н	HM	Н	LM	LM	НМ	L	Н	HM	Н	**	LM	HM	НМ	Н	НМ
Moultrie	LM	L	L	L	HM	L	L	HM	L	*	LM	**	HM	L	L	LM	HM
Ogle	LM	ΗМ	LM	LM	LM	НМ	LM	ΗМ	L	LM	LM	**	НМ	НМ	НМ	L	НМ
Peoria	Н	Н	HM	Н	HM	L	LM	HM	L	LM	LM	**	LM	HM	Н	LM	LM
Perry	LM	LM	НМ	НМ	L	НМ	Н	НМ	НМ	LM	НМ	**	LM	LM	НМ	LM	НМ
Piatt	LM	HM	LM	LM	HM	HM	LM	Н	L	*	LM	**	LM	LM	L	L	HM
Pike	LM	L	НМ	LM	L	LM	LM	Н	НМ	HM	LM	**	L	HM	L	LM	НМ
Pope	L	*	Н	Н	L	HM	L	Н	LM	*	L	**	*	HM	L	L	Н
Pulaski	Н	LM	Н	НМ	L	LM	LM	L	LM	LM	L	**	*	LM	L	L	HM
Putnam	L	*	L	LM	L	Н	LM	Н	HM	LM	LM	**	*	HM	*	L	Н
Randolph	HM	LM	LM	Н	HM	L	Н	Н	LM	LM	LM	**	L	НМ	L	LM	Н
Richland	HM	HM	LM	Н	L	HM	Н	Н	LM	LM	Н	**	Н	HM	Н	Н	Н
Rock Island	ΗM	HM	Н	LM	LM	HM	HM	Н	HM	LM	LM	**	L	LM	Н	LM	LM
St. Clair	Н	Н	HM	HM	HM	L	LM	L	HM	LM	LM	**	L	LM	HM	LM	LM
Saline	LM	HM	HM	Н	Н	HM	Н	LM	Н	HM	HM	**	Н	HM	ΗМ	L	HM
Sangamon	Н	Н	HM	НМ	HM	LM	HM	L	LM	LM	LM	**	HM	HM	LM	LM	LM
Schuyler	LM	Н	L	Н	L	Н	Н	ΗМ	HM	*	L	**	*	L	L	L	Н
Scott	L	LM	HM	L	*	LM	Н	HM	Н	LM	HM	**	*	LM	L	L	НМ
Shelby	LM	L	LM	LM	Н	HM	Н	HM	LM	*	L	**	HM	LM	L	L	HM
Stark	LM	*	L	L	L	HM	L	Н	Н	LM	L	**	*	Н	L	L	НМ
Stephenson	Н	Н	LM	НМ	HM	Н	LM	HM	Н	L	HM	**	HM	L	HM	ΗМ	НМ
Tazewell	ΗM	HM	ΗM	Н	LM	LM	LM	HM	L	НМ	LM	**	НМ	LM	Н	HM	НМ
Union	Н	LM	Н	Н	LM	HM	Н	LM	LM	HM	L	**	LM	Н	L	L	Н
Vermilion	HM	HM	HM	ΗM	LM	LM	LM	L	НМ	LM	HM	**	LM	LM	L	LM	LM
Wabash	LM	L	LM	Н	L	Н	Н	Н	НМ	Н	ΗM	**	Н	Н	L	ΗM	НМ
Warren	Н	LM	HM	LM	HM	LM	HM	LM	HM	LM	L	**	L	LM	L	L	HM
Washington	ΗM	LM	L	HM	L	ΗM	Н	LM	LM	ΗM	L	**	Н	ΗM	L	L	НМ
Wayne	HM	L	HM	LM	LM	LM	HM	Н	HM	Н	Н	**	LM	HM	*	HM	HM
White	LM	LM	LM	LM	L	HM	LM	LM	LM	HM	ΗM	**	ΗM	HM	L	L	НМ
Whiteside	HM	HM	LM	ΗМ	HM	HM	LM	HM	HM	LM	HM	**	LM	HM	LM	HM	HM
Will	HM	Н	LM	Н	LM	L	LM	L	LM	L	HM	**	HM	LM	HM	Н	L
Williamson	HM	Н	HM	Н	LM	HM	Н	LM	HM	LM	LM	**	HM	LM	Н	LM	HM
Winnebago	HM	Н	HM	Н	HM	LM	LM	LM	HM	LM	LM	**	HM	LM	LM	LM	LM
Woodford	LM	LM	HM	L	L	LM	LM	HM	L	HM	LM	**	LM	LM	L	HM	HM

* Data not available.

** Data only available by zip code.

APPENDIX 7. Technical Manual: Risk Data Sources

	Indicator	Data Source	Description	Methodology Notes
	Maternal Education	IDPH	Number and percent of births to mothers age 20 and above who are not high school graduates, 2016. Data include individuals who did not graduate high school or complete the GED and are from Birth Characteristics, IDPH Vital Statistics.	
	Parental Employment	American Community Survey (ACS) 5-Year Estimates, U.S. Census Bureau	Number and percentage of children age 5 and under with no parents in the labor force, 2012-2016. Data are from ACS table B23008 Age of own children under 18 years in families and subfamilies by living arrangements by employment status of parents. Data include children living with two parents, children living with father only, and children living with mother only.	
	Poverty	2012-2016 American Community Survey (ACS) 5-Year Estimates, U.S. Census Bureau	Number and percent of children age 5 and under living in families with income below 100% poverty levels, 2012-2016. Poverty maps showing 50 and 200 percent of the federal poverty threshold are available on the Risk and Reach website to further illuminate the share of families living in deep poverty and the share struggling to make ends meet. Data are from the ACS table B17024 Age by ratio of income to poverty level in the past 12 months. Universe: Population for whom poverty status is determined.	
Family Stability	Child Care Cost	IDHS; ACS	Average child care cost and average cost as a share of median family income, 2016. Child care market rate data are from the Market Rate Survey of Licensed Child Care Programs in Illinois Fiscal Year 2016 (Tables 35, 36, and 37). Child care daily market rates are the averages of the market rate medians of three types of child care providers: licensed child care centers, licensed family child care homes, and licensed family child care group homes. For each type of child care provider, the rates are generated by taking the average of the median rates for 4 age groups: Infants (6 weeks-14 months), Toddlers (15-23 months), Twos (24-35 months), Preschoolers (36- 59 months). Rates for License-Exempt Child Care Center and License-Exempt Child Care Home are not available at the county level. Child care market rates are assumed to be the cost, however, for a variety of reasons, the cost of child care may exceed price. See more on http://www.dhs.state.il.us/page.aspx?item=105841. Family income data are from ACS Table B19125 Median family income in the past 12 months (in 2016 inflation-adjusted dollars) by the presence of own children under 18 years.	
	Housing Cost	American Community Survey (ACS) 5-Year Estimates, U.S. Census Bureau	Number and percent of occupied housing units with housing costs higher than 30 percent of household income, 2012-2016. Data are from ACS Table B25106 Tenure by housing costs as a percentage of household income in the past 12 months. Housing units include both owner-occupied and renter-occupied.	
	Homelessness	ISBE	Number and percent of kindergarten students identified as homeless, FY2016. Homelessness is defined by the McKinney-Vento Homeless Assistance Act.	11 counties with 0 percent homelessness were manually reassigned from Low-Moderate Risk to Low Risk. See footnote for details.
	Maltreatment	DCFS; ACS	Number of indicated victims of abuse and neglect and rate per 1,000 children age 5 and under, FY2016. Data show unique children with indicated reports. Indicated Child Reports consist of the number of child reports where at least one allegation is indicated during the fiscal year. The indicated allegation can be from one of four groups: neglect, physical and other abuse, sexual abuse, and risk of harm. The numerator data are from DCFS and the denominator data are from ACS.	
	Drug Overdose Deaths	IDPH; ACS	Number and rate of drug overdose deaths per 100,000 population, 2016. Deaths in which drug overdose (poisoning) was reported as the underlying cause of death. Data include overdose from any drug.	

	Indicator	Data Source	Description	Methodology Notes
	Maternal Morbidity	IDPH	Number of deliveries with severe maternal morbidity and rate per 10,000 deliveries, 2016-2017. Data include 2016 and 2017 Illinois hospital discharge data. Severe maternal morbidity includes unintended outcomes of the process of labor and delivery that result in significant short-term or long-term consequences to a woman's health. Data are unavailable for some counties because IDPH does not report data for areas with fewer than 10 cases.	
	Preterm Births	IDPH	Number and percent of preterm births, 2016. Preterm is defined as babies born alive before 37 weeks of pregnancy are completed. Data are from IDPH Vital Statistics.	
Health	Lead Exposure	IDPH	Number and percentage of children ages 0-6 tested who had elevated blood lead levels (equal to or greater than 5 microg/dL), 2016. Public health intervention level for blood lead exposure was $\geq 10 \ \mu$ g/dL until early 2019 when the intervention level was decreased to $\geq 5 \ \mu$ g/dL. Data are from IDPH's Illinois Lead Program 2016 Annual Surveillance Report.	
	Violence Exposure	ISP	Number of violent crimes and rate per 100,000 people, 2016. Violent crime is defined by the Federal Bureau of Investigation's Uniform Crime Reporting Program as murder and nonnegligent manslaughter, rape, robbery, and aggravated assault. Data are unavailable for some counties because ISP identified them as noncompliant/ failure to report.	
	Kindergarten Readiness	ISBE	Number and percent of kindergarten students without demonstrated readiness, SY2017-2018. Data include kindergarten students without demonstrated readiness in three of the four Kindergarten Individual Development Survey (KIDS) development areas: social and emotional development, language and literacy development, and cognition/math.	
Early Care & Education	Third Grade Proficiency: Language	ISBE	Number and percent of 3rd grade students not meeting expectations in English Language Arts, SY2016-2017. Partnership for Assessment of Readiness for College and Careers (PARCC) performance measures students' readiness for the next grade level/course. There are five Performance Levels for PARCC assessments: Level 1: Did not yet meet expectations; Level 2: Partially met expectations; Level 3: Approached expectations; Level 4: Met expectations; and, Level 5: Exceeded expectations. Data" are from ISBE's Illinois Report Card.	
	Third Grade Proficiency: Math	ISBE	Number and percent of 3rd grade students not meeting expectations in math, SY2016-2017. Partnership for Assessment of Readiness for College and Careers (PARCC) performance measures students' readiness for the next grade level/course. There are five Performance Levels for PARCC assessments: Level 1: Did not yet meet expectations; Level 2: Partially met expectations; Level 3: Approached expectations; Level 4: Met expectations; and, Level 5: Exceeded expectations. Data are from ISBE's Illinois Report Card.	

Footnote: The z-score methodology used to assign Risk Level in our Report makes assignments based on a county's value relative to the state mean (see the methodology section of the introduction for details). This methodology is sensitive to the data distribution and in some instances resulted in a Risk Level assignment that was inconsistent with our understanding of actual risk. For example, 11 counties with 0% homelessness were assigned to the Low-Moderate Risk Level because of their proximity to the mean, but in actuality 0% homelessness embodies low levels of risk. In instances like these, we manually reassigned the county's Risk Level. The affected Risk Indicators include: homelessness.

APPENDIX 8. Technical Manual: Reach Data Sources

	Indicator	Data Source	Description	Methodology Notes
	Income Assistance	IDHS and ACS	Number and percent of income-eligible children age 5 and under receiving TANF, 2016. Income eligibility is defined as children living below 50 percent of poverty, which is the approximate income threshold used by Illinois to determine whether a family meets the requirement of financial need in order to be eligible for TANF cash assistance.	
	Child Care Subsidy	IDHS and ACS	Number and percent of income-eligible children age 5 and under receiving Child Care Assistance Program benefits, FY2016. Income eligibility defined as children living below 185 percent of poverty, which is the income eligibility threshold for CCAP. Data are unavailable for some counties because IDPH does not report data for areas in which fewer than 10 children received services.	
stability	Housing Assistance	Picture of Subsidized Households and CHAS, HUD	Number and percent of households receiving HUD housing assistance, 2015. HUD housing assistance includes Public Housing, Housing Choice Vouchers, and Project Based Section 8 assistance. To be eligible for these programs, the household must make less than 80% of the Area Median Income (AMI) of the area they are applying to.	
Family S	Food Assistance	IDHS and ACS	Number and percent of income-eligible children age 5 and under receiving SNAP benefits, 2016. SNAP participation data are from December 2016. Income eligibility defined as children living below 165 percent of poverty, which is the SNAP income eligibility threshold in Illinois. Our participation rate estimation results in some counties having a participation rate over 100 percent, designated as 100*. This is likely a result of sampling variability in the ACS data used to estimate the number of income-eligible individuals in those counties. The use of different data sources to estimate participation rate numerators and denominators can result in estimates of eligible individuals with a particular characteristic or of potential benefits to eligible individuals that are lower than the corresponding estimates of participants or benefits received by participants. When this happens, estimated rates exceed 100 percent. Numbers served reflect unduplicated counts of individuals served over the course of a year. Not all participants are continuously active during the year.	14 counties with SNAP participation rates of 100 percent or higher were manually reassigned from High-Moderate Reach to High Reach. See footnote for details.
	Permanency	Children and Family Research Center, University of Illinois at Urbana- Champaign	Number and percent of children age 5 and under attaining permanent homes within 12 months of entry into substitute care, FY2016. Permanency includes reunification with families, guardianship by a relative, or adoption.	33 counties with 0 percent permanency were manually reassigned from Low-Moderate Reach to Low Reach. See footnote for details.
	Prenatal Care	IDPH	Number and percent of births with adequate or above prenatal care utilization, 2016. Adequate prenatal care defined using the Kotelchuck Index, which categorizes prenatal care as inadequate, intermediate, adequate, and adequate plus based on the date when prenatal care was initiated and the number of prenatal visits.	
Health	Child Nutrition	IDHS and ACS	Number and percent of income-eligible children age 5 and under receiving WIC benefits, 2016. WIC data are from December 2016. Income eligibility defined as children living below 185 percent of poverty, which is the income eligibility threshold for WIC. Our participation rate estimation results in some counties having a participation rate over 100 percent, designated as 100*. This is likely a result of sampling variability in the ACS data used to estimate the number of income-eligible individuals in those counties. The use of different data sources to estimate participation rate numerators and denominators can result in estimates of eligible individuals that are lower than the corresponding estimates of participants or benefits received by participants. When this happens, estimated rates exceed 100 percent. Numbers served reflect unduplicated counts of individuals served over the course of a year. Not all participants are continuously active during the year.	3 counties with WIC participation rates of 100 percent or higher were manually reassigned from High-Moderate Reach to High Reach. See footnote for details.

	Indicator	Data Source	Description	Methodology Notes
ealth	Immunization	ІДРН	Number and percent of children age 19-35 months who completed the combined 7 vaccine series, 2016. The combined seven vaccine series (4:3:1:4:3:1:4) includes 4 or more doses of diphtheria and tetanus (DTaP), 3 or more doses of polio, 1 or more doses of measles-mumps-rubella (MMR), Haemophilus influenzae type b (Hib) full series (3 or 4 doses, depending on product type received), 3 or more doses of hepatitis B (HepB), 1 or more doses of Varicella, and 4 or more doses of Pneumococcal Conjugate (PCV). Data are from the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE), IDPH. Reporting immunization data to the registry is not mandatory in the state of Illinois so the data would not capture every child in Illinois, only those that have been reported by participating providers.	
Ť	Lead Testing	IDPH	Number and percent of children age 6 and under tested for blood lead levels, 2016. Data are from IDPH's Illinois Lead Program 2016 Annual Surveillance Report.	
	Mental Health Services	IDHFS	Number and percent of children age 5 and under enrolled in All Kids who received mental health services through All Kids, FY2018. Illinois's All Kids Program administers the state's Medicaid program, the Children's Health Insurance Program, and a state-funded health insurance program. Data are unavailable for some counties because, in accordance with HIPAA privacy standards, IDHFS does not report data for counties with fewer than 5 cases.	
	Home Visiting	ISBE, IDHS, GOECD MIECHV project, Head Start Collaboration Office, and ACS	Number and percent of program-eligible children age 5 and under enrolled in a home visiting program, FY2016. Home visiting programs include Head Start home- based, Healthy Families Illinois, Parents Too Soon, Prevention Initiative (PI), and Maternal, Infant, and Early Childhood Home Visiting Program. Program-eligible defined as children living below 185 percent of poverty. Some but not all home visiting programs include a requirement that families have low income. Based on FY2019 data, approximately 79 percent of PI slots are center-based, not home-based, but both home- and center-based PI slots are included here because the program did not report data by program type in FY2016. Early Head Start also provides home visiting but data are not included because data could not be verified for some counties.	Counties with 0 percent of program-eligible children enrolled in home visiting programs were manually reassigned from Low- Moderate Reach to Low Reach. See footnote for details.
/ Care & Education Health	Developmental Screening	Child Find Project	Number and percent of children age 5 and under who received developmental screening, FY2018. Data include number of children screened during event of cumulative monthly report. Child Find developmental screening data are only available by zip code of the location where the screening took place. FY2018 data were used because FY2016 data were missing for several zip codes. Data do not represent all children screened. Of the 96,344 children who received and reported a developmental screening through Child Find in FY2018, only 57,141 have zip code data for the screening location.	
Early	Early Intervention	IDHS and ACS	Number and percent of children age 2 and under receiving Early Intervention services, FY2016. Receipt of Early Intervention services defined as children with an active Individualized Family Service Plan implemented in accordance with Part C of the Individuals with Disabilities Education Act. Data are unavailable for some counties because IDHS does not report data for areas in which fewer than 10 children received services.	
	Early Childhood Special Education	ISBE and ACS	Number and percent of children age 3 to 5 receiving Early Childhood Special Education services, FY2016. Receipt of Early Childhood Special Education services defined as children served under Part B of the Individuals with Disabilities Education Act.	

	Indicator	Data Source	Description	Methodology Notes
	High-Quality Child Care	IDHS and INCCRRA	Number and percent of children receiving child care subsidies who were in a Gold Circle of Quality program, FY2017. Data show unduplicated number of children. Data are only limited to children receiving subsidies through the Child Care Assistance Program (CCAP). Programs include both licensed child care centers and licensed family child care homes. Henderson and Putnam counties did not have any children receiving CCAP in FY2017. Data for Wayne County are not verified.	Counties with 0 percent of CCAP-receiving children enrolled in Gold Circle of Quality programs were manually reassigned from Low-Moderate Reach to Low Reach. See footnote for details.
Early Care & Education	Prevention Initiative	ISBE and ACS	Prevention Initiative capacity and capacity as a share of eligible children age 3 and under, FY2016. Eligible defined as children living below 185 percent of poverty. While there is not an income eligibility requirement for the Prevention Initiative, children must be at risk for school failure as defined by the state, and the state's definition of at risk includes poverty.	37 counties with 0 percent Prevention Initiative capacity for eligible children age 3 and under were manually reassigned from Low-Moderate Reach to Low Reach. See footnote for details.
	Publicly Funded Preschool	ISBE, Head Start Collaboration Office, and ACS	Publicly funded preschool capacity and gap between capacity and number of eligible children age 3 to 5, FY2016. Data are at the site-level. Publicly funded Preschool includes Head Start, Preschool For All, and Preschool For All Expansion. Eligible children are defined as children living below 200 percent of poverty, which is an approximation of the eligibility rules across the three programs: 100 percent of poverty for PFA Expansion, and a proxy of 185 percent of poverty for PFA to capture those children considered at risk for academic failure.	14 counties with no gap between capacity and the number of children age 3 to 5 eligible for publicly funded preschool were manually reassigned from High- Moderate Reach to High Reach. See footnote for details.

Footnote: The z-score methodology used to assign Reach Level in our Report makes assignments based on a county's value relative to the state mean (see the methodology section of the introduction for details). This methodology is sensitive to the data distribution and in some instances resulted in a Reach Level assignment that was inconsistent with our understanding of actual reach. For example, 14 counties with SNAP participation rates of at least 100% were assigned to the High-Moderate Reach Level because of their proximity to the mean, but in actuality a 100% participation rate embodies high levels of reach. In instances like these, we manually reassigned the county's Reach Level. The affected Reach Indicators include: food assistance, permanency, child nutrition, home visiting, high-quality child care, prevention initiative, and publicly funded preschool.

1. Shonkoff, J. & Meisels, S. (2000). Early childhood intervention: A continuing evolution. In J. P. Shonkoff & S. J. Meisels (Eds)., The handbook of early childhood intervention, 2nd edition (pp. 3-31). Boston, MA: Cambridge University Press.

Halle, T., Forry, N., Hair, E., Perper, K., Wandner, L., & Vick, J. (2009). Disparities in early learning and development: Lessons from the early childhood longitudinal study – birth cohort (ECLS-B). Washington, DC: Child Trends.

Brooks-Gunn, J., Fuligni, A. S., & Berlin, L. J. (2003). Early child development in the 21st Century: Profiles of current research initiatives. New York, NY: Teachers College, Columbia University.

Burr J. & Grunewald, R. (2006). Lessons learned: A review of early childhood developments studies. Minneapolis, MN: Federal Reserve Bank of Minneapolis.

- 2. The District of Columbia, Colorado, Louisiana, Maryland, Minnesota, Oklahoma, and Pennsylvania have each done a Risk and Reach assessment.
- 3. The Nebraska Children's Budget and A Fiscal Scan of Illinois Public Investments in Children and Youth, Ages 8-25 provided inspiration for the fiscal analysis in this Report.
- 4. Additional geographies (legislative districts and subcounty for Cook County) are available on the website: www.RiskandReach.erikson.edu.
- 5. ACS 2016 5-year estimates.
- 6. U.S. Census Bureau, 2016.
- 7. For child population totals by county, please see Table 6.
- 8. National Scientific Council on the Developing Child. 2007. Excessive Stress Disrupts the Architecture of the Developing Brain. Working Paper 3. Cambridge, MA: Center on the Developing Child, Harvard University. Extracted from http:// developingchild.harvard.edu/index.php/resources/reports and working papers/working papers/wp3/
- 9. Evans, Gary W., and Michelle A. Schamberg. 2009. Childhood Poverty, Chronic Stress, and Adult Working Memory. Proceedings of the National Academy of Sciences 106(16): 6545-.49
- 10. Evans, Gary W., and Michelle A. Schamberg. 2009. Childhood Poverty, Chronic Stress, and Adult Working Memory. Proceedings of the National Academy of Sciences 106(16): 6545-.49
- 11. Yeung, W. J., Linver, M. R., & Brooks-Gunn, J. (2002). How money matters for children's development: Parental investment and family processes. Child Development, 73(6), pp. 1861-1879.
- 12. The Urban Institute. The Negative Effects of Instability on Child Development: A Research Synthesis. (September 2013). Extracted from https://www.urban.org/sites/default/files/publication/32706/412899-The-Negative-Effects-of-Instabilityon-Child-Development-A-Research-Synthesis.PDF
- 13. Child Trends DataBank (2010). Parental Education. Retrieved from www.childtrendsdatabank.org/?g=node/183.

Bobo, J. K., Gale, J. L., Thapa, P. B., & Wassilak, S. G. (1993). Risk factors for delayed immunization in a random sample of 1163 children from Oregon and Washington. Pediatrics, 91(2), 308-314.

adolescents. Journal of the European Economic Association, 11(s1), 123-160.

Halle, T., Forry, N., Hair, E., Perper, K., Wandner, L., Wessel, J., & Vick, J. (2009). Disparities in early learning and development: Lessons from the Early Childhood Longitudinal Study - Birth Cohort (ECLS-B). Washington, DC: Child Trends.

Jackson, A. P., Brooks-Gunn, J., Huang, C. C., Glassman, M. (2000). Single mothers in lowwage jobs: Financial strain, parenting, and preschoolers' outcomes. Child Development, 71(5): 1409-1423.

Singh, G. K., & Yu, S. M. (1995). Infant mortality in the United States: Trends, differentials, and projections, 1950 through 2010. American Journal of Public Health, 85(7), 957-964.

15. Fiscella, K., & Kitzman, H. (2009). Disparities in academic achievement and health: The intersection of child education and health policy. Pediatrics, 123(3), 1073-1080.

Barnett, W. S., & Yarosz, D. J. (2007). Who goes to preschool and why does it matter? Preschool Policy Matters, 8. New Brunswick, NJ: NIEER.

Carneiro, P., & Heckman, J. J. (2003). Human capital policy. In J.J. Heckman, A.B. Krueger & B.M. Friedman (Eds.), Inequality in America: What role for human capital policies (77-240). Cambridge, MA: MIT Press.

Brown, B., Fiks, A., Forrest, C., Hashim, K., & Pati, S. (2009). Early childhood predictors of early school success: A selective review of the literature. Washington, DC: Child Trends.

Abrahamse, A. F., Morrison, P. A., & Waite, L. J. (1988). Beyond stereotypes: Who becomes a single teenage mother? Santa Monica, CA: RAND Corporation.

Child Trends. (2007). Binge Drinking. Retrieved from http://www.childtrendsdatabank.org/indicators/2BingeDrinking.cfm.

Child Trends DataBank (2010). Parental Education. Retrieved from www.childtrendsdatabank.org/?q=node/183.

17. Reardon, S. F. (2011). The widening academic achievement gap between the rich and the poor: New evidence and possible income children. New York: Russell Sage Foundation Press.

Halle, T., Forry, N., Hair, E., Perper, K., Wandner, L., & Vick, J. (2009). Disparities in early learning and development: Lessons from the Early Childhood Longitudinal Study - Birth Cohort (ECLS-B). Washington, DC: Child Trends.

destructive behavior among adolescents. Childhood, 2(4), 212-220.

Cole, T. J., Donnet, M. L., & Stanfield, J. P. (1983). Unemployment, birthweight, and growth in the first year. Archives of Disease in Childhood, 58(9), 717-721.

Jones, L. (1990). Unemployment and child abuse. Families in Society: The Journal of Contemporary Human Services, 71(10), 579-588.

Madge, N. (1983). Unemployment and its effects on children, Journal of Child Psychology and Psychiatry, 24(2), 311-319.

Theodossiou, I. (1998). The effects of low-pay and unemployment on psychological wellbeing: A logistic regression approach. Journal of Health Economics, 17(1): 85-104.

14. Carneiro, P., Meghir, C., & Parey, M. (2013). Maternal education, home environments, and the development of children and

16. Child Trends. (2003). Daily Cigarette Use. Retrieved from http://www.childtrendsdatabank.org/indicators/3Smoking.cfm.

explanations. In R. Murnane & G. Duncan (Eds.), Whither opportunity? Rising inequality and the uncertain life chances of low-

18. Christoffersen, M. N. (1994). A follow-up study of long-term effects of unemployment on children: Loss of self-esteem and self-
19. Vleminckx, K & Smeeding, T.M. (2001). Child well-being, child poverty, and child policy in modern nations. Bristol, England. The Policy Press.

Theodossiou, I. (1998). The effects of low-pay and unemployment on psychological wellbeing: a logistic regression approach. Journal of Health Economics, 17(1): 85-104.

20. Duncan, G. J., & Brooks-Gunn, J. (2000). Family poverty, welfare reform and child development. Child Development. 71 (1): 188-196.

Mather, M., & Adams, D. (2006). A KIDS COUNT/PRB report on Census 2000: The risk of negative child outcomes in lowincome families: KIDS COUNT and Population Reference Bureau.

National Center for Children in Poverty. (1999). Poverty and brain development. Columbia University, Mailman School of Public Health. Retrieved from http://www.nccp.org/publications/pub 398.html.

Huffman, L. C., Mehlinger, S. L., & Kerivan, A. S. (2000). Risk factors for academic and behavioral problems at the beginning of school: The Child and Mental Health Foundation Agencies Network.

McLanahan, S. (2004). Diverging destinies: How children are faring under the second demographic transition. Demography, 41(4), 607-627.

21. Brooks-Gunn, J., & Duncan, G. J. (1997). The effects of poverty on children. Future of Children, 7, 55-71.

Schulman, K., & Barnett, W. S. (2005). The benefits of prekindergarten or middle-income children. New Brunswick, NJ: NIEER.

McLanahan, S. (2004). Diverging destinies: How children are faring under the second demographic transition. Demography, 41(4), 607-627.

Fass, S., Alden-Dinan, K., & Aratani, Y (2009). Child Poverty and Intergenerational

Mobility, A Report. The National Center for Children in Poverty.

Reardon, S. F. (2011). The widening academic achievement gap between the rich and the poor: New evidence and possible explanations. In R. Murnane & G. Duncan (Eds.), Whither opportunity? Rising inequality and the uncertain life chances of low-income children. New York: Russell Sage Foundation Press.

- 22. Semega, J., Fontenot, K., & Kollar, M. Income and Poverty in the United States: 2016. September 2017. https://www.census. gov/content/dam/Census/library/publications/2017/demo/P60-259.pdf
- 23. The federal poverty definition consists of a series of income thresholds based on family size and composition. In 2016, the federal poverty threshold for a family of one adults and two children was \$19,337 in annual household income. Federal poverty thresholds should not be confused with federal poverty quidelines. The Census Bureau uses poverty thresholds to prepare estimates of the number of individuals and families in poverty. The poverty guidelines, a simplified version of the poverty thresholds, are used as an eligibility criterion by a number of Federal programs like TANF and SNAP. Federal poverty guidelines do not take into account household composition, i.e. the number of adults and children. While the federal poverty threshold for a family of two adults and two children was \$24,339 in 2016, the federal poverty guideline for a family of four for the same year was \$24,300.

U.S. Census Bureau, Poverty thresholds by Size of Family and Number of Children, 2016. Retrieved from https://www. census.gov/data/tables/time-series/demo/incomepoverty/historical-poverty-thresholds.html

U.S. Census Bureau. How the Census Bureau Measures Poverty. Retrieved from https://www.census.gov/topics/incomepoverty/poverty/guidance/povertymeasures.html.

U.S. Department of Health and Human Services, Notice 81 FR 4036, Page 4036-4037, Document Number 2016-01450, January 25, 2016. https://www.federalregister.gov/documents/2016/01/25/2016-01450/annual-updateof- the-hhs-poverty-guidelines.

- states/#/IL.
- pdf.
- states/#/IL.
- states/#/IL.
- states/#/IL.
- two-bedroom unit.

National Low Income Housing Coalition. Out of Reach 2018: The High Cost of Housing. Extracted from https://nlihc.org/sites/ default/files/oor/OOR 2018.pdf.

- households with children was not available.
- https://www.hudexchange.info/resources/documents/2017-AHAR-Part-2.pdf.
- 33. American Institutes for Research. (November 2014). America's Youngest Outcasts: A Report Card on Child Homelessness. Nov2014.pdf.
- Extracted from http://www.homelesschildrenamerica.org/media/NCFH AmericaOutcast2010 web.pdf.
- Extracted from http://www.homelesschildrenamerica.org/media/NCFH_AmericaOutcast2010_web.pdf.

24. Economic Policy Institute. The cost of child care in Illinois. Extracted from https://www.epi.org/child-care-costs-in-the-united-

25. Federal Register Vol. 80 No. 247 (December 24, 2015). https://www.govinfo.gov/content/pkg/FR-2015-12-24/pdf/2015-31883.

26. Economic Policy Institute. The cost of child care in Illinois. Extracted from https://www.epi.org/child-care-costs-in-the-united-

27. Economic Policy Institute. The cost of child care in Illinois. Extracted from https://www.epi.org/child-care-costs-in-the-united-

28. Economic Policy Institute. The cost of child care in Illinois. Extracted from https://www.epi.org/child-care-costs-in-the-united-

29. Fair Market Rent (FMR) is typically the 40th percentile of gross rents for standard rental units. FMRs are determined by HUD on an annual basis, and reflect the cost of shelter and utilities. FMRs are used to determine payment standards for the Housing Choice Voucher program and Section 8 contracts. In 2018, FMR in Illinois was \$887 for a one-bedroom unit and \$1,058 for a

30. National Low Income Housing Coalition. (2018b). The gap: A shortage of affordable homes 2018. Washington, DC: Author.

31. Housing units include both owner-occupied and renter-occupied. The map shows data for all households because data on

32. U.S. Department of Housing and Urban Development, Office of Community Planning and Development. (2018) The 2017 annual homeless assessment report (AHAR) to Congress: Volume II: Estimates of homelessness in the United States. Extracted from

Extracted from https://www.air.org/sites/default/files/downloads/report/Americas-Youngest-Outcasts-Child-Homelessness-

34. National Center on Family Homelessness. (2011). America's youngest outcasts 2010: State report card on child homelessness.

35. National Center on Family Homelessness. (2011). America's youngest outcasts 2010: State report card on child homelessness.

- 36. Brennan, M., Reed, P., & Sturtevant, L. (2014). The impacts of affordable housing on education: A research summary. Washington, DC: National Housing Conference, Center for Housing Policy.
- 37. National Center on Family Homelessness. (2011). America's youngest outcasts 2010: State report card on child homelessness. Extracted from http://www.homelesschildrenamerica.org/media/NCFH AmericaOutcast2010 web.pdf
- 38. There are two primary data sources for homeless children. School districts are required to report to the Illinois State Board of Education on the number of homeless students served, and the U.S. Department of Housing and Urban Development collects data about the population enrolled in shelters and temporary housing. Numbers are subject to underreporting because of changing living situations, failure to capture doubled-up families or families in precarious housing, and failure to capture children who are not attending school and/or not living in a shelter.
- 39. McLaughlin, K. A., Sheridan, M. A., & Lambert, H. K. (2014). Childhood adversity and neural development: deprivation and threat as distinct dimensions of early experience. Neuroscience & Biobehavioral Reviews, 47, 578-591.

Dube, S. R., Felitti, V. J., Dong, M. Chapman, D. P., Giles, W. H., & Anda, R. F. (2003). Childhood abuse, neglect, and household dysfunction and the risk of illicit drug use: The adverse childhood experiences study. Pediatrics, 111, 564-574.

Sapolsky, R. M. (1996). Why stress is bad for your brain. Science, 273(5276), 749-750.

Widom, C. S. (2000). Childhood victimization: Early adversity, later psychopathology. National Institute of Justice Journal, 242. 3-9.

- 40. Guterman, N. B. (2001). Stopping child maltreatment before it starts: Emerging horizons in early home visitation services. Thousand Oaks, CA: Sage Publications.
- 41. Dube, S. R., Felitti, V. J., Dong, M. Chapman, D. P., Giles, W. H., & Anda, R. F. (2003). Childhood abuse, neglect, and household dysfunction and the risk of illicit drug use: The adverse childhood experiences study. Pediatrics, 111, 564-574.

Centers for Disease Control and Prevention: National Center for Injury Prevention and Control. Child maltreatment: Fact sheet. Extracted from http://www.cdc.gov/ncipc/factsheets/cmfacts.htm.

Stovall-McClough, K. C., & Dozier, M. (2004). Forming attachments in foster care: Infant attachment behaviors during the first 2 months of placement. Development and Psychopathology, 16(2), 253-271.

Barth, R. P., Wildfire, J., & Green, R. L. (2006). Placement into foster care and the interplay of urbanicity, child behavior problems, and poverty. American Journal of Orthopsychiatry, 76(3), 358-366.

Centers for Disease Control and Prevention. (2011). Child maltreatment: Consequences. Extracted from http://www.cdc. gov/ViolencePrevention/childmaltreatment/consequences.html.

42. Maltreatment allegations can be from one of four groups: neglect, physical and other abuse group, sexual abuse, and risk of harm. In Illinois, the majority of maltreatment reports receive an investigation to make a determination about whether the alleged maltreatment took place. Children are considered victims of maltreatment if an investigation by the state child welfare agency determines their case is substantiated. Illinois differentiates between substantiated and indicated determinations. A substantiated determination means that the investigation concludes that the allegation of maltreatment or risk of maltreatment was supported or founded according to state law or policy. An indicated determination means that the investigation concludes that maltreatment could not be substantiated but there was a reason to suspect that at least one child may have been maltreated or was at risk of maltreatment. An unsubstantiated determination is made when there is not sufficient evidence under state law to conclude or suspect maltreatment or risk of maltreatment.

U.S. Department of Health and Human Services, Administration for Children and Families, Administration on Children, Youth and Families, Children's Bureau. (2016).

Child Maltreatment 2014: Reports from the States to the National Child Abuse and Neglect Data System: Table 2-1: Screened-In and Screened-Out Referrals, 2014. Extracted from http://www.acf.hhs.gov/sites/default/files/cb/cm2014.pdf.

U.S. Department of Health & Human Services, Administration for Children and Families, Administration on Children, Youth and Families, Children's Bureau. Child maltreatment 2016. (February 1, 2018). Extracted from https://www.acf.hhs.gov/cb/resource/ childmaltreatment-2016.

- 43. Relative to other SUD data that often suffer from lack of reliability due to reporting and quality issues, drug overdose deaths caregivers thus their interpretation in the context of early childhood risk is limited.
- 44. Over 80 percent of Illinois overdose deaths in 2016 were opioid-related fatalities. Illinois Department of Human Services. OneNetLibrary/27896/documents/OpioidCrisisInIllinois 051617.pdf.

Rudd, RA, Seth, P, David, F, and Scholl L. Increases in Drug and Opioid-Involved Overdose Deaths - United States, 2010-2015. MMWR, Centers for Disease Control and Prevention, December 2016.

45. Peleg-Oren, N., & Teichman, M. (2006). Young children of parents with substance use disorders (SUD): A review of the literature and implications for social work practice. Journal of Social Work Practice in the Addictions, 6(1-2), 49-61.

IOM (Institute of Medicine), & NRC (National Research Council). (2014). New directions in child abuse and neglect research. Washington, DC: The National Academies Press.

- Chassin L, Pitts SC, DeLucia C Dev Psychopathol. 1999 Fall; 11(4):915-32.
- 47. Babies with drug withdrawal symptoms at birth experience longer hospital stays and health care costs nearly eight times newborns born without NAS.

Crain's Chicago Business. In withdrawal: Treating the babies of Illinois' opioid crisis. Extracted from https://www. chicagobusiness.com/static/section/opioids-nicu.html.

- 48. National Organization on Fetal Alcohol Syndrome, Extracted from https://www.nofas.org/factsheets/
- 49. Temporary Assistance for Needy Families Annual Report to Congress. (December 2006). Extracted from http://www.acf.hhs. gov/programs/ofa/annualreport7/ar7index.htm.
- 50. The federal poverty definition consists of a series of income thresholds based on family size and composition. In 2016, the federal poverty threshold for a family of one adults and two children was \$19,337 in annual household income.

U.S. Census Bureau, Poverty thresholds by Size of Family and Number of Children, 2016. Retrieved from https://www.census. gov/data/tables/time-series/demo/incomepoverty/historical-poverty-thresholds.html

51. Burnside, A. & Flovd, I. (October 25, 2018), TANF Benefits Remain Low Despite Recent Increases in Some States, Center on lowdespite-recent-increases-in-some-states.

are tracked through established administrative processes. However, drug overdose deaths are not specific to parents and

The Opioid Crisis in Illinois: Data and the State's Response. DHS 4489 (N-05-17). Extracted from http://www.dhs.state.il.us/

46. The relation of adolescent substance use to young adult autonomy, positive activity involvement, and perceived competence.

higher than newborns born without neonatal abstinence syndrome (NAS). In 2016, Illinois babies with NAS stayed in the hospital around 13 days and cost nearly \$34,000 each to care for, compared to a two-day stay and a cost of about \$4,400 for

Budget and Policy Priorities. Extracted from https://www.cbpp.org/research/family-income-support/tanf-benefits-remain-

- 52. Burnside, A. & Floyd, I. (October 25, 2018). TANF Benefits Remain Low Despite Recent Increases in Some States. Center on Budget and Policy Priorities. Extracted from https://www.cbpp.org/research/family-income-support/tanf-benefitsremain-lowdespite-recent-increases-in-some-states.
- 53. Matthew Desmond, "Eviction and the Reproduction of Urban Poverty," American Journal of Sociology, 118(1), 2012
- 54. Will Fischer, "Research Shows Housing Vouchers Reduce Hardship and Provide Platform for Long-Term Gains Among Children," Center on Budget and Policy Priorities, October 7, 2015, https://www.cbpp.org/research/housing/researchshows-housingvouchers-reduce-hardship-and-provide-platform-for-long-term.
- 55. National Low Income Housing Coalition. Out of Reach 2018: The High Cost of Housing. Extracted from https://nlihc.org/ sites/default/files/oor/OOR 2018.pdf.

Fischer, W. & Sard, B. (2017). Chart book: Federal housing spending is poorly matched to need. Washington, DC: Center on Budget and Policy Priorities.

- 56. U.S. Department of Agriculture, Food and Nutrition Service. Characteristics of Supplemental Nutrition Assistance Program Households: Fiscal Year 2016. Table B.3. Extracted from https://fnsprod.azureedge.net/sites/default/files/ops/ Characteristics2016.pdf.
- 57. U.S. Department of Agriculture, Food and Nutrition Service. Characteristics of Supplemental Nutrition Assistance Program Households: Fiscal Year 2016. Table B.5. Extracted from https://fnsprod.azureedge.net/sites/default/files/ops/ Characteristics2016.pdf.
- 58. U.S. Department of Agriculture, Food and Nutrition Service. Characteristics of Supplemental Nutrition Assistance Program Households: Fiscal Year 2016. Table B.14. Extracted from https://fnsprod.azureedge.net/sites/default/files/ops/ Characteristics2016.pdf.
- 59. Carlson, S., Rosenbaum, D., Keith-Jennings, B., & Nchako, C. Center on Budget and Policy Priorities. SNAP Works for America's Children. (September 29, 2016). Extracted from https://www.cbpp.org/sites/default/files/atoms/files/9-29-16fa. pdf.
- 60. Participation rate estimation results in some counties having a participation rate over 100 percent. This is likely a result of sampling variability in the ACS data used to estimate the number of eligible individuals in those counties.
- 61. Horwitz SM, Hurlburt MS, Cohen SD, Zhang J, Landsverk J. Predictors of placement for children who initially remained in their homes after an investigation for child abuse and neglect. Child Abuse & Neglect. 2011;35(3):188-198. Extracted from https://www.ncbi.nlm.nih.gov/pubmed/21489626.

Committee on Child Maltreatment Research, Policy, and Practice for the Next Decade: Phase II; Board on Children, Youth, and Families; Committee on Law and Justice; Institute of Medicine; National Research Council; Petersen AC, Joseph J, Feit M, editors. Washington (DC): National Academies Press (US); 2014 Mar 25. Extracted from https://www.ncbi.nlm.nih.gov/ books/NBK195980/.

- 62. ACF. The AFCARS report: Preliminary FY 2011 estimates as of July 2012. No 19. Washington, DC: U.S. Department of Health and Human Services, Children's Bureau; 2012a.
- 63. Dozier, M. & Rutter, M. (2008). Challenges to the development of attachment relationships faced by young children in foster and adoptive care. In J. Cassidy & P. Shaver (Eds.), Handbook of attachment (pp. 698-717). New York: Guilford Press.

Fisher, P. A., Van Ryzin, M. J., & Gunnar, M. R. (2011). Mitigating HPA axis dysregulation associated with placement changes in foster care. Psychoneuroendocrinology, 36(4), 531-539.

Leve, L. D., Harold, G. T., Chamberlain, P., Landsverk, J. A., Fisher, P. A., & Vostanis, P. (2012), Practitioner review: Children in foster care-vulnerabilities and evidence-based interventions that promote resilience processes. Journal of Child Psychology and Psychiatry, 53(12), 1197-1211.

Rubin, D. M., Alessandrini, E. A., Feudtner, C., Localio, A. R. Hadley, T. (2004). Placement changes and emergency department visits in the first year of foster care. Pediatrics, 114(3), e354-360.

Wulczyn, F., Hislop, K., Chen, L. (2007). Foster care dynamics 2000-2005: A report from the Multistate Foster Car Data Archive. Chapin Hall Center for Children at the University of Chicago, Chicago, IL.

Wulczyn, F., Kogan, J., & Harden, B.J. (2003). Placement stability and movement trajectories. Social Services Review, 77(2), pp. 212-236.

- of federal funds.
- of federal funds.
- 66. Estimation of federal funds includes consideration of federal reimbursement rate for Department of Healthcare and State Non-General Revenue Funds may receive a transfer of federal funds.
- the impact of SNAP on children, please see the Reach section on SNAP.
- 68. DCFS aims to keep families together and intact whenever possible and to prevent children from entering substitute July to September quarter in 2018, SRI served 3,539 children ages three to five.

64. FY2018 agency expenditure data represents estimates as of 1/1/2019. Estimation of federal funds includes consideration of federal reimbursement rate for Department of Healthcare and Family Service programs and the percentage of overall Child Care Assistance Program federal funding. In some cases, State Non-General Revenue Funds may receive a transfer

65. FY2018 agency expenditure data represents estimates as of 1/1/2019. Estimation of federal funds includes consideration of federal reimbursement rate for Department of Healthcare and Family Service programs and the percentage of overall Child Care Assistance Program federal funding. In some cases, State Non-General Revenue Funds may receive a transfer

Family Service programs and the percentage of overall Child Care Assistance Program federal funding. In some cases,

67. (1) TANF funding is an estimate of spending on cash assistance for all children age five and under. The Illinois Department of Human Services was unable, at this time, to provide the exact total of TANF cash assistance payments to households with children age five and under. The estimate provided is based on IDHS information regarding the number of children age five and under served by the program during December 2018 as well as FY2018 numbers of TANF cash assistance cases, total payments, and total number of children served. TANF expenditures that go to the Child Care Assistance Program (CCAP) are excluded in this figure and included in the Early Care and Education domain. (2) Housing funding is for all participants. Housing expenditure data on children age five and under were not available. For the impact of homelessness on children, please see the Risk section on homelessness. (3) SNAP data is for Federal Fiscal Year 2018. Estimate based on total SNAP payments to Illinois residents and percentage of those individuals under the age of 6. For

care or experiencing prolonged stays once in substitute care. Through Family Maintenance, DCFS identifies children and families deemed to be at-risk and provides them with services and tools to prevent incidents of abuse and neglect from occurring. Substitute Care provides temporary housing to children who have been placed into DCFS care due to an unsafe living environment. Adoption Services facilitates permanent homes for children who are placed in DCFS care and are unable to be reunited with their families. In collaboration with the Erikson Institute, DCFS' Early Childhood Project provides children who are involved with the child-welfare system with developmental screenings to assess their unique needs. In 2016, 5,806 children were served. DCFS' School Readiness Initiative (SRI) ensures that children three to five, who are under the care of DCFS, are enrolled in an early learning program such as Head Start and preschool. During the

- 69. TANF funding is an estimate of spending on cash assistance for all children age five and under. The Illinois Department of Human Services was unable at this time to provide the exact total of TANF cash assistance payments to households with children age five and under. The estimate provided is based on IDHS information regarding the number of children age five and under served by the program during December 2018 as well as FY2018 numbers of TANF cash assistance cases, total payments, and total number of children served.
- 70. Housing funding is for all participants. Housing expenditure data on children age five and under were not available. For the impact of homelessness on children, please see the Risk section on homelessness. 3. DCFS provided an estimate of client-specific payment information readily available for children age five and under. Research would be required to approximate the full cost of services for this population. The figure includes expenses related to foster homes and care, adoption services, family preservation and maintenance, group home care, and other services. A number of the programs in the child and family section receive funding from the DCFS Children's Services Fund. This fund, in part, receives federal monies under the Social Security Act's Title IV-E Foster Care and Adoption Services Program. 4. Funding includes salary, fringe, and operational costs.
- 71. DCFS provided an estimate of client-specific payment information readily available for children age five and under. Research would be required to approximate the full cost of services for this population. The figure includes expenses related to foster homes and care, adoption services, family preservation and maintenance, group home care, and other services. A number of the programs in the child and family section receive funding from the DCFS Children's Services Fund. This fund, in part, receives federal monies under the Social Security Act's Title IV-E Foster Care and Adoption Services Program.
- 72. Funding includes salary, fringe, and operational costs.
- 73. Center on the Developing Child at Harvard University (2010). The Foundations of Lifelong Health Are Built in Early Childhood. http://www.developingchild.harvard.edu
- 74. Newacheck, P.W., Hughes, D.C., & Stoddard, J.J. (1996). Children's access to primary care: Differences by race, income, and insurance status. Pediatrics, 97(2), 26-29.
- 75. Lewit, E. M., & Baker, L. S. (1995). School readiness. The Future of Children: Critical Issues for Children and Youths, 5(2), 128-139.
- 76. Ackerman, D. J., and Barnett, W. S. (2005). Prepared for kindergarten: What does "readiness" mean? New Brunswick, NJ: National Institute for Early Education Research. Available at http://nieer.org/resources/policyreports/report5.pdf.
- 77. American College of Obstetricians and Gynecologists and the Society for Maternal-Fetal Medicine, Kilpatrick SK, Ecker JL. Severe maternal morbidity: screening and review. Am J Obstet Gynecol. 2016;215(3):B17-B22. Extracted from https://www. ncbi.nlm.nih.gov/pubmed/27560600.
- 78. Data are through the third guarter of 2015. The fourth guarter of 2015 is excluded because of the transition of the International Classification of Diseases coding system from the 9th to the 10th revision.

U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion. Severe Maternal Morbidity in the United States. Page last updated: November 27, 2017. Retrieved from https://www.cdc.gov/reproductivehealth/ maternalinfanthealth/severematernalmorbidity.html#anchor References.

Kathryn R. Fingar, Ph.D., M.P.H., Megan M, Hambrick, M.S.W., Kevin C. Heslin, Ph.D., and Jennifer E. Moore, Ph.D., R.N. Trends and Disparities in Delivery Hospitalizations Involving Severe Maternal Morbidity, 2006-2015. September 2018. Retrieved from https://hcup-us.ahrg.gov/reports/statbriefs/sb243-Severe-Maternal-Morbidity-Delivery-Trends-Disparities. jsp?utm source=ahrg&utm medium=en-1&utm term=&utm content=1&utm campaign=ahrg en9 11 2018.

- 79. D'Alton ME, Main EK, Menard MK, Levy BS. The National Partnership for Maternal Safety. Obstet Gynecol. 2014 May;123(5):973-7. http://dx.doi.org/10.1097/AOG.000000000000219 pmid: 24785848.

- 82. Infants born weighing less than 2,500 grams (5 pounds, 5 ounces) are consideredLBW.
- www.childtrends.org/wpcontent/uploads/2015/03/116 Preterm Births.pdf.
- www.cdc.gov/nchs/data/nvsr/nvsr62/nvsr62_08.pdf.
- prematurity indepth.html.
- 86. Lead Safe Illinois. Extracted from http://www.leadsafeillinois.org/familysafety/pregnancy.asp.
- blood lead levels. A pooled analysis of 12 epidemiologic studies. Environ Res.1998;79:51-68.
- 89. Nemours. KidsHealth. (February 2015). Extracted from https://kidshealth.org/en/parents/lead-poisoning.html.
- lead-exposure/Pages/Treatment-of-Lead-Poisoning.aspx.
- from https://jamanetwork.com/journals/jamapediatrics/fullarticle/2344705.
- https://jamanetwork.com/journals/jamapediatrics/fullarticle/2344705.
- sample of children (Juvenile Justice Bulletin NCJ 235504). Washington, DC: U.S. Department of Justice.
- Office of Justice Programs. October 2009. Extracted from https://www.ncjrs.gov/pdffiles1/ojjdp/227744.pdf.
- Office of Justice Programs. October 2009. Extracted from https://www.ncjrs.gov/pdffiles1/ojjdp/227744.pdf.
- 96. Violent crime is defined by the Federal Bureau of Investigation's Uniform Crime Reporting Program as murder and nonnegligent manslaughter, rape, robbery, and aggravated assault.

80. Kathryn R. Fingar, Ph.D., M.P.H., Megan M, Hambrick, M.S.W., Kevin C. Heslin, Ph.D., and Jennifer E. Moore, Ph.D., R.N. Trends and Disparities in Delivery Hospitalizations Involving Severe Maternal Morbidity, 2006-2015. September 2018. Figure 5. Retrieved from https://hcup-us.ahrq.gov/reports/statbriefs/sb243-Severe-Maternal-Morbidity-Delivery-Trends-Disparities.jsp?utm_source=ahrq&utm_medium=en-1&utm_term=&utm_content=1&utm_campaign=ahrq_en9_11_2018.

81. March of Dimes. (2010). Premature babies. Retrieved from http://www.marchofdimes.com/baby/premature_indepth.html.

83. Child Trends DataBank. Preterm Births: Indicators of Child and Youth Well-Being. (March 2015). Extracted from https://

84. Matthews, T. J. & MacDorman, M. F. (2013) Infant mortality statistics from the 2010 period linked birth/infant death data set. National Vital Statistics Reports, 62(8). Hyattsville, MD: National Center for Health Statistics. Extracted from http://

85. March of Dimes (2012). What we know about prematurity. Retrieved from http://www.marchofdimes.com/mission/

87. Nemours. KidsHealth. (February 2015). Extracted from https://kidshealth.org/en/parents/lead-poisoning.html.

88. Lanphear BP, Matte TD, Rogers J, et al. The contribution of lead-contaminated house dust and residential soil to children's

90. American Academy of Pediatrics. Extracted from https://www.aap.org/enus/advocacy-and-policy/aap-health-initiatives/

91. Finkelhor, D., Turner, H., Shattuck, A., & Hamby, S. (2015). Prevalence of childhood exposure to violence, crime, and abuse: Results from the National Survey of Children's Exposure to Violence. JAMA Pediatrics, 169(8), 746-754. Table 5. Extracted

92. Finkelhor, D., Turner, H., Shattuck, A., & Hamby, S. (2015). Prevalence of childhood exposure to violence, crime, and abuse: Results from the National Survey of Children's Exposure to Violence. JAMA Pediatrics, 169(8), 746-754. Extracted from

93. Finkelhor, D., Turner, H., Hamby, S., & Ormrod, R. (2011). Polyvictimization: Multiple exposures to violence in a national

94. Finkelhor, David, et al. Children's Exposure to Violence: A Comprehensive National Survey. US Department of Justice,

95. Finkelhor, David, et al. Children's Exposure to Violence: A Comprehensive National Survey. US Department of Justice,

FBI's Uniform Crime Reporting (UCR) Program. Extracted from https://ucr.fbi.gov/crimein-the-u.s/2016/crime-in-theu.s.-2016/topic-pages/violent-crime.

- 97. Child Trends, and The AAP Center for Child Health Research. "Chapter 3: Child Health. "Early Child Development in Social Context: A Chartbook. Commonwealth Fund, Sept. 2004. Web. 9 Dec. 2013.
- 98. Krans, E. E., & Davis, M. M. (2012). Preventing low birthweight: 25 years, prenatal risk, and the failure to reinvent prenatal care. American Journal of Obstetrics and Gynecology, 206(5), 398-403.
- 99. Kotelchuck, Milton. "An Evaluation of the Kessner Adequacy of Prenatal Care Index and a Proposed Adequacy of Prenatal Care Utilization Index." American Journal of Public Health 84.9 (1994): 1414-420. Web. 28 Feb. 2014. Extracted from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1615177/pdf/amjph00460-0056.pdf.
- 100. Green, M., & Palfrey, J. S. (Eds.). (2002). Bright Futures: Guidelines for Health Supervision of Infants, Children, and Adolescents. Arlington, VA: National Center for Education in Maternal and Child Health.
- 101. Kotelchuck, Milton. "An Evaluation of the Kessner Adequacy of Prenatal Care Index and a Proposed Adequacy of Prenatal Care Utilization Index." American Journal of Public Health 84.9 (1994): 1414-420. Web. 28 Feb. 2014. Extracted from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1615177/pdf/amjph00460-0056.pdf.
- 102. The Kotelchuck Index, also called the Adequacy of Prenatal Care Utilization (APNCU) Index, measures two dimensions of prenatal care: when prenatal care was initiated and the number of prenatal visits.

Alexander, G. R. & Kotelchuck, M. Quantifying the adequacy of prenatal care: a comparison of indices. Public Health Rep. 1996 Sep-Oct; 111(5): 408-419. Extracted from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1381783/.

- 103. Food insufficiency, family income, and health in U.S. preschool and school aged children. American Journal of Public Health, 91(5):78106. May 2001. Extracted from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1446676/.
- 104. Looker, A.C., Dallman, P.R., Carroll, M.D., Gunter, E.W., and Johnson, C.L. Prevalence of iron deficiency in the United States. JAMA 1997; 277 (12): 973-6 and Lee, B.J., Mackey-Bilaver, L., Chin, M. Effects of WIC and Food Stamp Program Participation on Child Outcomes. USDA Economic Research Service, Contractor and Cooperator Report No. 27, Washington, DC, December 2006.
- 105. National and State-Level Estimates of Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) Eligibles and Program Reach, 2011. Table 12, U.S. Department of Agriculture, Food and Nutrition Service, March 2014. Extracted from http://www.fns.usda.gov/sites/default/files/WICEligibles2011Volume1.pdf.
- 106. Participation rate estimation results in some counties having a participation rate over 100 percent. This is likely a result of sampling variability in the ACS data used to estimate the number of eligible individuals in those counties.
- 107. Office of Disease Prevention and Health Promotion. Extracted from https://www.healthypeople.gov/2020/topicsobjectives/topic/immunization-andinfectious- diseases.
- 108. Gastañaduy, P. A., Redd, S. B., Fiebelkorn, A. P., Rota, J. S., Rota, P. A., Bellini, W. J., ... & Wallace, G. S. (2014). Measles-United States, January 1-May 23, 2014. Morbidity and Mortality Weekly Report, 63(22), 496-499.
- 109. The combined seven vaccine series (4:3:1:4:3:1:4-FS) includes four or more doses of diphtheria and tetanus (DTaP), three or more doses of polio, one or more doses of measles-mumps-rubella (MMR), Haemophilus influenzae type b (Hib) full series (three or four doses, depending on product type received), three or more doses of hepatitis B (HepB), one or more doses of Varicella, and four or more doses of Pneumococcal Conjugate (PCV).

Centers for Disease Control and Prevention. Extracted from https://www.cdc.gov/vaccines/imz-managers/coverage/nis/child/ tech-notes.html.

The CDC recommends a schedule for completing the vacines in the combined seven series. The recommended schedule should be completed by 18 months. The age range for our indicator includes children from 19 to 36 months, the same age range reported by the CDC, to facilitate comparisons with the national average.

Centers for Disease Control and Prevention. Recommended Immunization Schedule for Children and Adolescents Aged 18 Years or Younger, UNITED STATES, 2018. https://www.cdc.gov/vaccines/schedules/downloads/child/0-18yrs-childcombinedschedule.pdf

- 110. Nemours. KidsHealth. (February 2015). Extracted from https://kidshealth.org/en/parents/lead-poisoning.html.
- Health Officials. Atlanta. GA: Centers for Disease Control and Prevention: 1997.
- 112. The AAP recommends a risk assessment at the following well-child visits: 6 months, 9 months, 12 months, 18 months, 24 comes back positive.

American Academy of Pediatrics. Recommendations for Preventive Pediatric Health Care. Extracted from https://www.aap. org/en-us/Documents/periodicity schedule.pdf.

Advisory Committee on Childhood Lead Poisoning Prevention. Recommendations for blood lead screening of young children enrolled in Medicaid: targeting a group at high risk. MMWR Recomm Rep.2000; 49(RR-14):1-13.

- 113. Lead Safe Illinois. Extracted from http://www.leadsafeillinois.org/familysafety/pregnancy.asp.
- www.ncbi.nlm.nih.gov/pubmed/26632628.
- 115. Zur, J., Musumeci, M., and Garfield, R. Medicaid's Role in Financing Behavioral Health Services for Low-Income Individuals. infinancing-behavioral-health-services-for-low-incomeindividuals/view/footnotes/#footnote-223575-1.
- 116. Medicaid and CHIP Payment and Access Commission (MACPAC), Report to Congress on Medicaid and CHIP (Washington, DC: and-CHIP.pdf.
- 117. Illinois's All-Kids Program administers the state's Medicaid program, the Children's Health Insurance Program, and a statefunded health insurance program.
- and Health Risk Screenings and Assessments through Managed Care Organizations.

111. Centers for Disease Control and Prevention. Screening Young Children for Lead Poisoning: Guidance for State and Local Public

months, and at 3, 4, 5 and 6 years of age. AAP recommends to conduct a blood lead level test only if the risk assessment

114. Committee to Evaluate the Supplemental Security Income Disability Program for Children with Mental Disorders; Board on the Health of Select Populations; Board on Children, Youth, and Families; Institute of Medicine; Division of Behavioral and Social Sciences and Education; The National Academies of Sciences, Engineering, and Medicine, Mental Disorders and Disabilities Among Low-Income Children, ed. Boat TF and Wu JT, (Washington, DC: National Academies Press (US); October 2015), http://

Henry J. Kaiser Family Foundation, June 2017. Extracted from https://www.kff.org/medicaid/issue-brief/medicaids-role-

MACPAC, June 2015), https://www.macpac.gov/wp-content/uploads/2015/06/June-2015-Report-to-Congress-on-Medicaid-

118. Behavioral health services that were covered by DHFS for the child population age five and under during the reported time period include: Mental Health Assessment; Individual Treatment Plan Development, Review, and Modification; Individual/ Family Therapy; Community Support; Medication Administration, Monitoring, and Training; Client Centered Consultation; Mental Health Case Management; Crisis Intervention/Prehospitalization Screening; Developmental Screenings/Testing; Mental Health Risk Assessment; Prenatal Care At-Risk Assessment; Healthy Kids screenings provided by Primary Care Physicians including behavioral health; Behavioral health services provided by Federally Qualified Health Clinics and Rural Health Clinics;

- 119. FY2018 agency expenditure data represents estimates as of 1/1/2019. Estimation of federal funds includes consideration of federal reimbursement rate for Department of Healthcare and Family Service programs and the percentage of overall Child Care Assistance Program federal funding. In some cases, State Non-General Revenue Funds may receive a transfer of federal funds.
- 120. FY2018 agency expenditure data represents estimates as of 1/1/2019. Estimation of federal funds includes consideration of federal reimbursement rate for Department of Healthcare and Family Service programs and the percentage of overall Child Care Assistance Program federal funding. In some cases, State Non-General Revenue Funds may receive a transfer of federal funds.
- 121. Estimation of federal funds includes consideration of federal reimbursement rate for Department of Healthcare and Family Service programs and the percentage of overall Child Care Assistance Program federal funding. In some cases, State Non-General Revenue Funds may receive a transfer of federal funds.
- 122. This figure does not include federal maternal and child health funds for teen pregnancy prevention, training for school health personnel, and monitoring of school health centers.
- 123. ISBE could not provide CACFP expenditures by age at the time of publication. The amount reflects all children served. However, eligible participating entities include licensed child care institutions, Head Start Programs, preschool programs, before and after school programs, and emergency shelters which serve a majority of young children.
- 124. Family Care Assist, which provides health care for parents with young children, is not included here because expenditure data on children age five and under was not available. All Kids shows expenditures for children age five and under.
- 125. This figure does not include federal maternal and child health funds for teen pregnancy prevention, training for school health personnel, and monitoring of school health centers.
- 126. ISBE could not provide CACFP expenditures by age at the time of publication. The amount reflects all children served. However, eligible participating entities include licensed child care institutions, Head Start Programs, preschool programs, before and after school programs, and emergency shelters which serve a majority of young children.
- 127. FamilyCare Assist is an important source of health insurance for parents with young children but the program is not included here because expenditure data on children age five and under was not available.
- 128. All Kids shows expenditures for children age five and under.
- 129. Vandell, D.L., Belsky, J., Burchinal, M., Steinberg, L., Vandergrift, N., & NICHD Early Child Care Research Network. (2010, May-June). Do effects of early child care extend to age 15 years? Results from the NICHD study of early child care and youth development. Child Development, 81(3), 737-756.
- 130. Campbell, F. A., Ramey, C. T., Pungello, E. P., Sparling, J., & Miller-Johnson, S. (2002). Early Childhood Education: Young Adult Outcomes from the Abecedarian Project. Applied Developmental Science, 6, 42-57.
- 131. National Assessment of Educational Progress (NAEP); Long-term Trend Assessments. National Center for Education Statistics. Retrieved from: http://nces.ed.gov/nationsreportcard/ltt/.
- 132. Ackerman, D. J., and Barnett, W. S. (2005). Prepared for kindergarten: What does "readiness" mean? New Brunswick, NJ: National Institute for Early Education Research. Available at http://nieer.org/resources/policyreports/report5.pdf.
- 133. Haskins, R., & House, C. (2005). Closing achievement gaps. Policy Reports. Princeton, NJ: The Future of Children. Martin, A., Gardner, M., Brooks-Gunn, J., & Hill, J. (2008). Early Head Start Impacts Over Time and by Level of Participation. Mathematica Policy Research, MPR Reference No. 6260-520.

Yazejian, N., & Bryant, D. M. (2012). Educare Implementation Study Findings-August 2012. Chapel Hill: Frank Porter Graham Child Development Institute, UNC-CH.

collect work samples during routine classroom activities throughout the school day.

Illinois State Board of Education. Kindergarten Individual Development Survey, Overview for Administrators & Teachers. Extracted from https://www.isbe.net/Documents KIDSWebsiteResources/KIDS Overview Admin Teachers.pdf

Regional Educational Laboratory Program. Exploring State-by-state Definitions of Kindergarten Readiness to Support Informed Policymaking. (January 29, 2018). Extracted from https://ies.ed.gov/ncee/edlabs/regions/northwest/blog/ kindergartenreadiness.asp.

- and cognition/math.
- 136. Students' proficiency in each academic area is scored at one of five performance levels: 1-did not yet meet expectations, 2-partially met expectations, 3-approached expectations, 4-met expectations, and 5-exceeded expectations.
- 137. Students' proficiency in each academic area is scored at one of five performance levels: 1-did not yet meet expectations, 2-partially met expectations, 3-approached expectations, 4-met expectations, and 5-exceeded expectations.
- 138. Howard, K. S., & Brooks-Gunn, J. (2009). The role of home-visiting programs in preventing child abuse and neglect. The Future of Children, 19(2), 119-146.
- 139. The home visiting programs included in this map are Head Start home-based, Healthy Families Illinois, Parents Too Soon, based.
- 141. Developmental Monitoring and Screening. Child Development. Centers for Disease Control and Medicine, 12 July 2012. Web. Education. Retrieved from http://www.erikson.edu/wp-content/uploads/Erikson-IBSE-0-3-Summary-Report.pdf.
- 142. The Individuals with Disabilities Education Act (IDEA) requires states to have a comprehensive system to locate, identify, and families, educators, and providers about developmental delays, services, and resources.

134. Within the first 40 days of school, teachers assess children's knowledge, skills, and behaviors on 14 required measures across four readiness domains impacting student's long-term success: approaches to learning and self-regulation; social and emotional development; language and literacy development; and cognition/math. Teachers observe child interactions and

135. The three KIDS domains used in our indicator were social and emotional development; language and literacy development;

Prevention Initiative (PI), and Maternal, Infant, and Early Childhood Home Visiting Program. The map does not include family home visiting offered through Early Head Start because data could not be verified for some counties. Combined enrollment is presented as a share of all children age five and under living at or below 185 percent of poverty. While not all programs have an income eligibility requirement, the programs typically serve low-income households so showing enrollment as a share of the low-income population provides a more accurate illustration of program reach. Based on Fiscal Year 2019 data, approximately 79 percent of PI slots are center-based, not home-based, because the program did not report data by program type in Fiscal Year 2016. Beginning with Fiscal Year 2019, we will be able to break out the share of PI slots that are center-based and home-

140. Illinois Department of Human Services and Illinois State Board of Education. Look What I Can Do: Early Intervention for Young Children With Developmental Delays. Extracted from https://www.childfind-idea-il.us/Materials/engl growth chart.pdf.

9 Dec. 2013. Erikson Institute. Illinois Prevention Initiative Birth to Three Program Evaluation . (2012). Illinois State Board of

refer all children with disabilities. This early identification program is called Child Find. Child Find conducts activities that allow it to continuously search for and evaluate children who may have a developmental disability. Activities vary across locations but might include training school staff on recognizing developmental delays or holding playgroups during which parents are asked to complete a developmental milestone questionnaire. Child Find also distributes informational materials educating

- 143. Fiscal Year 2018 data were used because Fiscal Year 2016 data were missing for several zip codes. Data do not represent all children screened through Child Find. Of the 96,344 children screened through Child Find in Fiscal Year 2018, only 57,141 have zip code data for the screening location.
- 144. The data presented here reflect the family's county of residence.
- 145. Special education and related services are provided under Part B of the Individuals with Disabilities Education Act (IDEA), a federal law ensuring that early intervention, special education, and related services are provided to children with disabilities. In Illinois, the Illinois State Board of Education (ISBE) is the lead agency for Preschool Special Education IDEA Part B services.
- 146. Illinois Department of Human Services and Illinois State Board of Education. Look What I Can Do: Helping Children and Youth with Special Needs. Extracted from https://www.childfind-idea-il.us/Materials/Spe Needs Eng.pdf.
- 147. Counties with 0.0 percent have children receiving CCAP but no children in a Gold Circle of Quality program.
- 148. Eligible defined as children living below 185 percent of poverty. While there is not an income eligibility requirement for the Prevention Initiative, children must be at risk for school failure as defined by the state, and the state's definition of at-risk includes an indicator for poverty.
- 149. A county may indicate zero number of children served in Prevention Initiative because (1) the PI program serving children in one county is located in another county and reports their numbers in that county; or (2) the number of children served in PI is less than 10 and thus are suppressed.
- 150. Reynolds AJ, Temple JA, Robertson DL, Mann EA. Long-term effects of an early childhood intervention on educational achievement and juvenile arrest: A 15-year follow-up of low-income children in public schools. JAMA 285 (2001):2339-46.
- 151. Isaacs, J. B. (2008). Impact of Early Childhood Programs. Brookings Institution & First Focus; and Cunha, F., & Heckman, J. J. (2010). Investing in Our Young People. NBER Working Paper Series, Vol. w16201.
- 152. Data are at the site-level. Publicly funded Pre-K includes Head Start, Preschool For All, and Preschool For All Expansion. Eligible defined as children living below 200 percent of poverty, which is an approximation of the eligibility thresholds across the three programs: 100 percent of poverty for Head Start, 200 percent of poverty for PFA Expansion, and a proxy of 185 percent of poverty for PFA to capture those children considered at risk for academic failure.
- 153. FY2018 agency expenditure data represents estimates as of 1/1/2019. Estimation of federal funds includes consideration of federal reimbursement rate for Department of Healthcare and Family Service programs and the percentage of overall Child Care Assistance Program federal funding. In some cases, State Non-General Revenue Funds may receive a transfer of federal funds.
- 154. FY2018 agency expenditure data represents estimates as of 1/1/2019. Estimation of federal funds includes consideration of federal reimbursement rate for Department of Healthcare and Family Service programs and the percentage of overall Child Care Assistance Program federal funding. In some cases, State Non-General Revenue Funds may receive a transfer of federal funds.
- 155. Estimation of federal funds includes consideration of federal reimbursement rate for Department of Healthcare and Family Service programs and the percentage of overall Child Care Assistance Program federal funding. In some cases, State Non-General Revenue Funds may receive a transfer of federal funds.
- 156. Home Visiting expenditures do not include Prevention Initiative funds which are included in the Early Childhood Block Grant. Expenditures do not account for local funds especially in the case of Early Childhood Special Education which uses school funds from the K-12 funding formula.

- to age three programs.
- operating expenditures.
- Statute stipulatesan automatic 37 percent cut of the Early Childhood Block Grant.
- (for children ages three to five) services are funded by Part B of the federal IDEA.
- 162. Funding is for federal fiscal year.
- 163. Head Start funds flow directly from the U.S. Department of Health and Human Services to local agencies.
- IDEA and local dollars.
- 165. Georgetown University Health Policy Institute Center for Children and Families. Coverage for Children Under 6 Reversed under-6-reversed-course-between-2016-and-2017/

157. Administrators of home visiting programs include MIECHV, IDHS, ISBE, DFSS, and HS/EHS Home based. MIECHV is federally funded, while Healthy Families, Parents Too Soon and Prevention Initiative (PI) are state funded. IDHS administers Healthy Families and Parents Too Soon while ISBE administers PI. This figure only illustrates publicly funded programs and excluded Head Start/Early Head Start home based due to data availability. PI funding is included as a setaside in the Early Childhood Block Grant and funds primarily home visiting and a small number of center-based prenatal

158. Head Start is federally funded and goes directly to agencies. Migrant Head Start is funded through the state general

159. Early Childhood Block Grant includes Preschool For All (programs for 3-5 year-olds) and Prevention Initiative (includes home visiting and center-based care prenatal up to age three). Statewide represents all geographies outside of Chicago.

160. The bulk of funding for the Early Intervention Program (for infants and toddlers birth until age three) comes from State General Revenue Funds and from Illinois Department of Human Services through a federal Medicaid reimbursement. A very small portion of the program is funded by Part C of the federal Individuals with Disabilities Education Act (IDEA) with funds flowing through the Illinois State Board of Education. Additional funding comes from billing eligible families' private insurance and charging families who have the ability to pay a participation fee. Early Childhood Special Education

161. Does not include home visiting funding from Head Start or Early Head Start because data were not available. Additionally, locally funded home visiting models were excluded. The Prevention Initiative includes both center-based programs and home visiting programs, however these data were not included in this budget line because ISBE just began disaggregating in FY19 according to delivery model. PI is accounted for in the Early Childhood Block Grant budget line.

164. The bulk of funding for the Early Intervention Program comes from State General Revenue Funds and from Illinois Department of Human Services through a federal Medicaid reimbursement. A very small portion of the program is funded by Part C of the federal Individuals with Disabilities Education Act (IDEA) with funds flowing through the Illinois State Board of Education. Additional funding comes from billing eligible families' private insurance and charging families who have the ability to pay a participation fee. Early Childhood Special Education services are funded by Part B of the federal

Course Between 2016 and 2017, Table 1. Extracted from: https://ccf.georgetown.edu/2018/12/18/coverage-for-children-

451 N LASALLE DR, CHICAGO, IL 60654 | 312-755-2250 | ERIKSON.EDU